Supplemental Table 1: Summary of U.S. randomized controlled trials examining the use of complementary health approaches for back pain^a | Complementary approach | Study | Participants | Methods | Interventions | Primary
Measures | Primary
Outcomes | Conclusion | |-------------------------------|---|---|---|---|---|--|------------| | Acupuncture & massage therapy | Cherkin
et al. ¹⁵ ,
2001 | 262 adults with cLBP; mean age = 45 (SD 11); gender = 58%; race = 84%; pain duration = 61% > 1year; pain intensity = 6.2 (NRS Bothersomeness); function = 12.2 (RMDQ) | RCT of acupuncture, massage, vs self-care/usual care. | Acupuncture = traditional Chinese medicine including manual acupuncture, electroacupuncture, moxibustion, cupping, and advice. Massage = Swedish massage, deeptissue, trigger point. 10 sessions over 10 weeks. Self-care = book & videotapes on back care. | pain
bothersomenes
s (NRS: 0 - 10) | At 10 weeks for function, massage (-2.3 pts) > acupuncture > self-care; for pain: massage = acupuncture > self-care. At 52 weeks for pain & function, massage = self-care > acupuncture. | Supports | | Acupuncture | Cherkin
et al. ¹⁶ ,
2009 | 638 adults with cLBP; mean age = 47 (SD 13); gender = 62% female; race = 68% white, 8% Hispanic; pain duration = 68% > 1 year; function = 10.6 (RMDQ) | RCT of 3 types of acupuncture vs. usual care alone. | Acupuncture: individualized, standardized, simulated (sham). Usual care is whatever else they received. 10 treatments over 7 weeks period - 2/wk for 3 weeks, then 1/wk for 4 weeks. | Pain
bothersome (0 -
10) and
modified RMDQ
(0-23), with
statistical power
to detect 1.5 pt
and 2.0 pt mean
differences,
respectively
(MCID) | Supports use | Supports | | Acupuncture | Wang et al. 17, 2009 | 152 adult, pregnant with LBP; mean age = 32; gender = 100% female; race = n/a; pain duration = n/a; pain intensity = 66 (VAS); disability = 61 (Disability Rating Index) | RCT of acupuncture, sham-acupuncture, no treatment control | Auricular acupuncture at 3 ear points specific for LPB stimulated "continuously" with "press needles" for 1 week. Sham- acupuncture was same press needles at valid ear points but not specific for LBP. Control received no treatment. | pain intensity (VAS 0 - 100 mm); Disability Rating Index (DRI: 0 - 100, with 100 = maximum disability) at 1 week. Statistically powered on 30% reduction in VAS (MCID) from baseline to 1 week. | Verum acupuncture (- 45 mm) > sham acupuncture (- 27 mm) > no treatment control (-20 mm). Significant reduction in pain and improvement in function for verum compared to sham & no treatment. | Supports use | |-------------|---|--|--|---|---|---|-------------------------| | Acupuncture | Wasan
et al. ¹⁸ ,
2010 | 40 adults with cLBP; mean age = 48; gender = 51% female; race = 75% white; pain duration = 7 years; pain intensity = 4.9 (NRS); disability = 38% (ODI). | Controlled,
blinded,
crossover trial
of verum vs.
sham
acupuncture,
with High or
Low psychiatric
comorbidity | Verum acupuncture = single needle placed and rotated at LI4 for 30 min. Sham acupuncture = retractable needle (Streitberger) at LI4 for 30 min. Participants shown both needles at visit 1; treatment on visits 2 & 3. | pain intensity (NRS) at conclusion of single treatment session; powered to detect 30% mean difference between groups (MCID). | Significant reduction in pain intensity for both verum and sham acupuncture (~30% reduction), with no significant difference between either group, nor between those with High or Low psychiatric co-morbidity. | Does not
Support use | | Massage therapy | Cherkin
et al ¹⁹ .,
2011 | 401 adults with nonspecific cLBP; mean age = 48 (SD = 11); duration of pain > 1 year for 78% of participants | Parallel group
RCT of 2 types
of massage
and usual care | Structural massage, relaxation massage, usual care. Massage 10 weekly sessions each lasting 75 - 90 min. | RMDQ and pain
bothersomenes
s (0 - 10) at 10,
26, 52 weeks;
statistically
powered to
detect mean
group
differences of 2
pt and 1.5 pt,
respectively
(MCID) | structural massage = relaxation massage > usual care at 10 weeks (-2.7 and - 1.5, respectively on RMDQ and bothersomenes s compared to usual care) | Supports
use | |--|--|---|---|---|---|--|-------------------------| | Acupuncture,
massage
therapy, Spinal
manipulation | Eisenber
g et al. ²⁰ ,
2007 | 444 adults with acute LBP; mean age = 43; gender = 52% female; race = 64% white, 20% black, 9% Hispanic; pain duration = < 21 days; pain intensity >= 3 (NRS: 0 - 10) | RCT of usual care vs. choice of complementary health approach (acupuncture, spinal manipulation, or massage). | Usual care = primary care with medication, advice, activity alterations. CAM = up to 10 sessions over 5 weeks at nocost, = up to 5 more sessions at 50% cost. | Bothersomenes s of chief symptom (NRS for pain, numbness, or leg pain) and function (RMDQ), with statistical power to detect 2.5 pt (RMDQ) mean difference from baseline between groups (MCID). | Choice > usual care at 5 weeks for bothersomenes s (-1 pt) but not for function. Decreased pain statistically significant, but not considered clinically meaningful. | Not relevant | | Massage therapy | Field et al. ²¹ , 2008 | 47 prenatally depressed women; mean age = 28; gender = 100% female, race = 59% Hispanic, 32% Black, & 9% White; pain duration = n/a; | RCT of massage vs. no treatment. | massage = 20-min
session, 2/wk over
16 weeks. Control =
undefined. | depression,
anxiety, anger,
relationship,
LBP; statistical
power not
stated; MCID
not stated | At 16 weeks, massage > no treatment for pain intensity (roughly -1.5 pts). NOTE - this is a very poorly reported study, with high risk of bias. | Does not
Support use | | | | pain intensity = 4.6 (NRS) | | | | | | |-----------------|--|---|--|---|--|--|--------------| | Massage therapy | Field et al. ²² , 2007 | 30 adults with
LBP, mean age
= 41; gender =
55% male; race
= 67% white;
pain duration =
>6-months; pain
intensity = 5.1 | Randomized
study of
massage vs.
relaxation. No
description of
randomization
process. | massage = 2 30-min
sessions over 2
weeks. Relaxation =
30-min sessions at
home, 2/wk for 5
weeks. | VITAS = VAS with pain faces; but not designated as a "primary outcome"; MCID not stated; 70% power to detect "effects" on 5 outcomes, but no
power calculations included | both groups
improved over
5 weeks, no
statistical
comparison
between
groups. | Not relevant | | Massage therapy | Hernand
ez-Reif
et al. ²³ ,
2001 | 24 adults with cLBP; mean age = 40; gender = 50% female; race = 75% white; pain duration = > 6 months; pain intensity = 5.6 (NRS); function = n/a | RCT of
massage vs.
progressive
relaxation | massage = 2, 30-min sessions/week for 5 weeks of Swedish-like massage. Progressive relaxation = tensing & relaxing muscle groups done at home by participants, 2 30-min sessions/week for 5 weeks. | pain intensity (NRS and short- form McGill Pain Questionnaire); function = ROM for trunk flexion; statistical power not stated; MCID not stated | Both groups
improved over
5 weeks, no
statistical
comparison
between
groups. | Not relevant | | Massage therapy | Jacobso
n et al. ²⁴ ,
2015 | 46 adults with chronic LBP; mean age = 44 (range 18 -54); mean duration = 8 yrs since onset; | RCT of
structural
integration (SI)
+ rehab vs.
only rehab | SI = 10 sessions
over 20 weeks; 10
sessions over 20
weeks | pain bothersome (VAS 0- 100MM); 50% power to detect 17 mm mean difference between groups (MCID), | No significant differences. | Does not
Support use | |--------------------------|---|--|--|---|---|--|-------------------------| | Massage therapy | Wilson et al. ²⁵ , 2003 | 19 adults with acute LBP; mean age = 31; gender = 50% female; race = n/a; pain duration 6 weeks; pain intensity = n/a; function = 20% - 60% (ODI) | RCT of Muscle
Energy
Therapy (MET)
vs placebo
manual
therapy. | MET = patient activated muscle contraction against therapist counter- force, in a sequence of different muscle groups & positions. 2 sessions/week for 4 weeks. Placebo Manual Therapy = sidelying passive range of motion | ODI; converted
to a "change
score": [(pre -
post)/pre];
statistical power
not stated,
MCID not stated | MET > Placebo
at 4 weeks
(ODI: -18%
between group) | Supports
use | | Osteopathic manipulation | Anderss
on et
al. ²⁶ ,
(1999) | 155 adults with subacute LBP, mean age = 32, gender = 57% female, race = n/a; pain duration = >3 wk <6months; pain intensity = 48 (VAS), function = 24 (ODI) | RCT of OMT
vs. usual care | OMT = HVLA-SM,
muscle energy,
counterstrain,
articulation, and
myofascial release.
Usual care = advice,
medication, physical
therapy, corset, &/or
elect. Stim. Up to 8
sessions over 12
weeks. | pain intensity (VAS) and RMDQ and ODI, and medication usage; statistical power not stated; MCID not stated | Both groups improved significantly, but no sig between group differences for pain or function; however OMT group used less medication that usual care. | Does not
Support use | | Osteopathic manipulation | Cruser et al. ²⁷ , (2012) | 63 active duty
military with
acute LBP; mean
age = 27 (SD 1); | RCT of OMT
vs. usual care | 4 sessions over 4 weeks. OMT = any combination of: soft tissue, myofascial | pain intensity
(NRS 4-scales:
now, typical,
best, worst) and | At week 5,
significant
reduction in
pain (-1.5 pts) | Supports
use | | | | gender = 55% male, race = 56% white, pain duration = n/a; pain intensity = 5.4 (NRS), function = 12.4 (RMDQ) | | release, counterstrain, muscle energy, sacroiliac articulation, & HVLA SM. Usual care = advice, medication | function (RMDQ); statistical power not stated; MCID = 30% reduction for pain and function | for OMT, but not for function. | | |--------------------------|---|---|--|--|---|--|-------------------------| | Osteopathic manipulation | Hensel
et al. ²⁸ ,
2015 | 400 adult, pregnant women with LBP; mean age = 24 (SD = 4), race = 25% white, 17% black, 55% Hispanic; pain duration = n/a; pain intensity = 50 (CPI); function = 6.5 (RMDQ). | RCT of usual care (UC), UC + osteopathic manipulative treatment (OMT), vs. UC + placebo ultrasound | OMT included 7
sessions over 9
weeks; placebo
ultrasound was
detuned US. | pain intensity (VAS => characteristic pain intensity [CPI: 0 - 100]) & Roland-Morris Pain and Disability Questionnaire; >80% power to detect 30% change in primary outcomes (MCID). | At week 9, OMT = PUT > UC; no significant differences between OMT & PUT, but either better than UC alone. | Supports | | Osteopathic manipulation | Licciardo
ne et
al. ²⁹ ,
2010 | 144 pregnant women, mean age = 24, gender = 100% female, race = 33% white, 33% black, 32% Hispanic; pain duration = n/a; pain intensity = 4.9 (10-cm VAS); function - 8 (RMDQ) | RCT of usual
obstetrical care
(UOBC), UOBC
+ OMT, vs
UOBC + sham-
Ultrasound
(SUT) | OMT = soft tissue,
myofascial release,
muscle energy,
range-of-motion
mobilization. SUT =
de-tuned ultrasound.
7 sessions over 7
weeks. | pain intensity (10-cm VAS) and function (RMDQ); >70% power to detect between group difference of 1.25 cm (VAS) and 3 pts (RMDQ) (MCID) | At 8 weeks, for pain intensity, no sig between group differences; for function, all groups had INCREASED disability, but sig less so for OMT ~= SUT. | Does not
Support use | | Osteopathic manipulation | Licciardo
ne et
al. ³⁰ ,
2013 | 455 adults with cLBP; mean age = 41 (range: 29 - 51); 62% female, pain duration > 1 year in ~50% of patients; pain intensity - 44 (VAS); function - 5 (RMDQ) | RCT, 2 x 2
factorial design:
OMT, sham-
OMT, US,
sham-US | OMT included HVLA
SM, MVMA SM, soft
tissue manipulation,
isometric muscle
contraction; 6
sessions over 8
weeks. | Pain intensity
(VAS 0-100);
82% power to
detect between-
group difference
(OMT vs. sham-
OMT) of 6.6 mm
(pain VAS);
MCID stated as
30% pain
reduction | At week 12, no significant difference between OMT and US, nor US and sham-US, but OMT > sham-OMT (-9 mm difference VAS) | Supports
use | |--------------------------|---|--|---|---|---|---|-------------------------| | Osteopathic manipulation | Licciardo
ne et
al. ³¹ ,
2003 | 91 adults with cLBP, mean age = 50, gender = 64% female, race = 84% white; pain duration = 53% > 1 yr; pain intensity = 3.5 (10 cm VAS); function = 7.5 (RMDQ) | RCT of OMT,
sham-OMT, vs.
no intervention
control
(randomized
2:1:1) | OMT = mofascial release, strin-counterstrain, muscle energy, soft tissue, HVLA-SM, &/or cranial-sacral. Sham-OMT = range-of-motion, light touch, simulated-OMT . 7 sessions over 5 months. No treatment = baseline assessment and follow-up assessments, but no intervention. | pain intensity (10 cm VAS), and function (RMDQ); 80% power to detect "moderate" changes on SF- 36; MCID not stated for pain intensity nor function | At 1 & 3 months, OMT = sham-OMT > control (-1 cm VAS), but no sig diff between groups for function. | Does not
Support use | | Spinal
manipulation | Bialosky
et al. ³² ,
2014 | 110 adults with LBP; mean age = 32 (SD 12); gender =70% female; race = n/a; mean duration of pain = 16 weeks (interquartile range = 153 | RCT of SM,
placebo SM,
placebo SM
with
augmented
expectation, vs
no treatment | SM of 6 sessions over 2 weeks. | pain intensity (NRS, pain over last week); ODI. Study powered on reduction in experimentally- induced heat pain in response to SM; MCID not stated for pain | At 2 weeks, all groups improved, but no significant differences for pain or function. For 1st treatment, SMT > placebo SMT > no | Does
not
Support use | | | | weeks) | | | intensity & function | treatment | | |------------------------|--|--|--|--|--|--|--------------| | Spinal manipulation | Brennan
et al. ³³ ,
2006 | 123 adults with acute - subacute LBP, mean age = 38, 45% female, race = n/a; pain duration = 16 days; pain intensity = 5.2 (NRS); function = 43 (ODI) | Pragmatic RCT of SM, specific exercise, vs. stabilization exercise. After study completion, patients were further characterized as to whether thet fit a clinical prediction rule for appropriate treatment. | SM = HVLA &/OR
LVLA SM +
supervised exercise.
Specific exercise =
supervised
directional exercise;
Stabilization exercise
= trunk strengthening
and stabilization. All
patients who
improved by 33%,
then received
general exercise
regime including
aerobics. | function (ODI)
and whether
progressed to
Stage II (i.e.,
improved by
>33%); 80%
power to detect
between group
difference of 6
pts (ODI)
(MCID) | At 4 weeks: function improved in all groups (~-22 pts), though if the patient was "matched" there was significant greater improvement in ODI (-5 pts difference) | Not relevant | | Spinal
manipulation | Bronfort
et al. ³⁴ ,
2004 | 32 adults with sciatica & LBP, mean age = 49 yrs (SD 9), 43% female, race = n/a; pain duration = >50% with >1 year; pain intensity 4.9 (ODI), function = 46 (RMDQ) | Feasibility RCT
of SM, epidural
steroid
injections, vs.
self-care | SM = HVLA SM of variable # & frequency of sessions. Epidural = 3 injections over 12 weeks. Self-care = 2 1-hr sessions with physical therapis of advice + exercise recommendations | all outcomes
exploratory;
powered on
feasibility
outcomes rather
than clinical
outcomes;
MCID not stated | no group
comparisons
reported;
feasible to
perform | Not relevant | | Spinal manipulation | Bronfort
et al. ³⁵ ,
1996 | 174 adults with cLBP, mean age = 41(SD 10); gender = 47% female; race = n/a; pain duration = 2.5 years; pain intensity = 5.4 (NRS); function = 34 (RMDQ) | RCT of 3 interventions: A. SM + Trunk strengthening exercise (TSE), b. SM + Trunk stretching exercise (TRE), c. non-steroidal anti- inflammatory drug (NSAID) + TSE | 5 weeks of intervention, followed by 6 wk of supervised exercise alone | pain intensity (NRS) and disability (RMDQ); 80% power to detect 10% difference in primary outcomes; MCID not stated for pain intensity or function/disabilit y | all groups
improved on
both outcomes,
but no
significant
difference
between
groups at 5 and
11 weeks | Does not
Support use | |------------------------|--|--|---|--|--|---|-------------------------| | Spinal
manipulation | Bronfort
et al. ³⁶ ,
2014 | 192 adults with LBP + radiculopathy (>4 weeks); mean age = 57 (SD = 12), gender = 64% female; race = 93% white; mean pain duration = 2 years; pain intensity = 5.4 (NRS); function = 10.2 (RMDQ) | RCT of SM +
home exercise
& advice (HEA)
vs. HEA alone | HVLA SM; home
exercise and advice;
up to 20 sessions
over 12 weeks. HEA
= 4 face-to-face
sessions over 12
weeks. | leg pain
intensity (0 - 11
NRS) at 12
weeks, 52
weeks; 85%
power to detect
8% pts mean
difference
between groups
for leg pain
intensity (MCID) | At 12 weeks, between group diff = -1 pt; at 52 weeks, nonsignificant difference. | Supports | | Spinal
manipulation | Bronfort
et al. ³⁷ ,
2011 | 301 adults with cLBP, mean age = 45 (SD 11); gender = 60% female; race = n/a; median pain duration = 5 yrs; pain intensity = 5.3 (NRS); function = 8.5 | RCT of high-
dose,
supervised
exercise, SM,
vs. home-
exercise +
advice | Supervised exercise
= 20, 1-hr sessions,
2/wk; SM = HVLA,
variable # &
frequency of
sessions; home exer
= 2, 1-hour sessions
+ daily home
practice | pain intensity (NRS) and function (RMDQ) at 12 & 52 weeks; 80% power to detect "medium effect size" between groups; MCID not stated | At 12 weeks, all
3 groups had -2
pt reduction in
pain intensity,
& -4 pt
reduction in
RMDQ, but no
sig diff between
groups. Pain
intensity and | Does not
Support use | | | | (RMDQ) | | | | function
sustained to 52
wk with no diff
between
groups. | | |---------------------|---|---|---|--|--|--|-------------------------| | Spinal manipulation | Cherkin
et al. ³⁸ ,
1998 | 321 adults with
LBP; mean age
= 41; gender =
48% female;
race = n/a; pain
duration = 78% <
6 weeks; pain
intensity = 5.7
(NRS
Bothersomeness
); function = 12
(RMDQ) | RCT of SM,
physical
therapy (PT),
vs self-care
book | SM = HVLA manipulation. PT = McKenzie method, up to 9 visits over 4 weeks. Self-care book = educational book on back pain. | pain intensity (NRS bothersomenes s) and RMDQ; 80% power to detect 2.5 pt. and 1.5 pt. differences, respectively, for RMDQ and NRS (MCID). | At 4 and 12 weeks, for pain, all groups improved, but no significant differences (after adjusting for baseline variances); at 52 weeks, for function, SM = PT > self-care, but differences were small. | Does not
Support use | | Spinal manipulation | Cleland
et al. ³⁹ ,
2009 | 112 adults with acute - subacute LBP, mean age = 40 (SD 11), 52% female, race = n/a; pain duration = 45 days; pain intensity = 5.2 (NRS), function = 35.5 (ODI) | RCT of 3 types
of SM: supine
thrust, side-
lying thrust, or
non-thrust. | thrust SM = HVLA
SM; non-thrust SM =
LVLA SM; all groups
received home
exercise daily; 2
treatment sessions
within 1 week. | pain intensity (NRS) and function (ODI); >90% power to detect 9% between group difference in ODI; MCID not stated | At 1 week: for pain intensity, significant reduction in supine (-2 pts) & side-lying thrust (-1.5 pts) vs. supine non-thrust; for function, sig reduction for supine (-11.5 pts) & side- | Not relevant | | | | | | | | lying thrust (-8 pts) vs. nonthrust; no sig. diff. between thrust SMs. | | |------------------------|---|--|--|---|---|---|--------------| | Spinal manipulation | Cook et al. 40, 2013 | 154 adults with mechanical LBP; mean age = 48 (SD 15); gender = 53% female; race = 91% white; pain duration = 34 weeks (SD 100); pain intensity = 5.2 (NRS); function = 30 (ODI) | non-blinded,
pragmatic RCT
of thrust SM vs.
non-thrust SM | thrust SM = HVLA
SM; non-thrust SM =
LVLA SM; both
groups
received
home exercise daily | Pain intensity (NRS; MCID = 2 pts change); Fear Avoidance Beliefs Questionnaire; ODI (50% change from baseline = MCID); 80% power to detect "medium effect (0.30)" between groups | After 2
sessions, no
significant
difference
between thrust
vs. non-thrust
SM. | Not relevant | | Spinal
manipulation | Fritz et
al. ⁴¹ ,
2015 | 220 adults with acute LBP (<16 days); mean age - 37.4 (range 18 - 60); gender = 58% female; race = 89% white; pain duration = <16 days; pain intensity = 5 | RCT of SM +
exercise vs.
usual care | spinal manipulation
plus home exercise;
usual care = primary
care. 4 sessions
during 4 weeks. | change in ODI (range: 0 -100; MCID = 6 points) at 3 months; 86% power to detect 7-pt difference between groups in ODI. | At 3 months, between group difference = -3.2 [95% CI, -5.9 to -0.47], P = .02. At 12 months, between-group difference, -2.0 [95% CI, -5.0 to 1.0], P = .19. | Supports | | | | (NRS); function = 41 (ODI); no treatment in prior 6 months | | | | | | |------------------------|--|---|---|---|--|--|----------| | Spinal
manipulation | George
et al. ⁴² ,
2013 | 169 pregnant women with LBP; mean age = 27 (range 15-45); gender = 100% female; race = 43% black, 35% white; pain duration > 8 weeks; pain intensity = 5.8 (NRS); function = 4.8 (QDI) | RCT of usual
obstetric care
vs. UC + SM +
home-exercise
+ education | SM and stabilization exercise. Weekly sessions for up to 6 weeks. | Pain intensity (NRS) and Quebec Disability Questionnaire (QDQ) at 6 - 8 weeks; 80% power to detect 2-pt difference on NRS (MCID), & 0.6 difference on QDQ | At 6 - 8 weeks,
SM > UC with
intergroup diff
of -3 pts (NRS)
and -1 pts
(QDQ). | Supports | | Spinal
manipulation | Goertz
et al. ⁴³ ,
2013 | 91 adults [active duty military] with acute LBP; mean age = 26 (SD 5); gender = 86% male; race = 73% white; duration of pain = 11.5 days (SD = 8), pain intensity = 5.8 (NRS); function = 12 (RMDQ) | pragmatic RCT
of usual care
vs. UC + SM | HVLA SM of up to 2 sessions/week for 4 weeks. | Pain intensity (NRS; MCID = 2.5 change) and RMDQ and Back Pain Functional Scale; 80% power to detect 3-pt diff on RMDQ, and 90% power for 2-pt diff on NRS | At 2 & 4 weeks,
SM + UC > UC
alone; NRS = -
2.2, -1.2,
respectively;
RMQ =-3.9, -
4.0,
respectively | Supports | | Spinal manipulation | Gudavall
i et al. ⁴⁴ ,
2006 | 235 adults with cLBP; mean age = 41; gender = 37% female; race = 82% white, 6% hispanic, 6% black; pain duration = ??; pain intensity = 37 (VAS; function 7 (RMDQ) | RCT of SM vs.
Physical
Therapy/exerci
se | SM = LVVA, flexion-distraction (Cox Technique); Physical Therapy = PT guided exercise, strengthening, cardiovascular, ultrasound, cryotherapy for up to 45 min sessions. 2 - 4 sessions/week for up to 4 weeks. | pain intensity (VAS: 0-100 mm) and RMDQ; 80% power to detect "a change in perceived pain"; MCID not stated | SM > PT at 4
weeks for pain
intensity (-8
mm), but not
function. | Supports | |---------------------|--|--|--|---|---|---|--------------| | Spinal manipulation | Haas et al. ⁴⁵ , 2004 | 72 adults with cLPB; mean age = 48 (SD 14); gender = 54% female; race = 84% white; pain duration = > 3 months; MVK pain intensity = 49; MVK pain disability = 39 | RCT of dose of SM (1, 2, 3, or 4 visits)/week for 3 weeks, and adding physical modalities (4x2 factorial design). All participants received 18 sessions total, comprised of some combination of SM & PM. | SM = HVLA to
lumbar spine.
Physical Modalities
(PM) = heat/ice,
ultrasound,
electrotherapy,
massage, trigger
point therapy. | Modified von Korff (MVK) pain = average of 3 scales (NRS 0- 10) of pain today, worst pain in last 4 weeks, and average pain during last 4 weeks. MVK Disability = average of 3 scales of interference with daily activities, social/recreation al activities, and ability to work outside or in home; MCID = 25% change from baseline 72% power for | 12 SM > 9 SM > 3 SM at 4 weeks for pain (-17.1 vs - 11.4 compared to 3 SM), but no effect for function. | Supports use | | | | | | | pain and 91% power for disability | | | |---------------------|----------------------------------|--|--|---|---|--|--------------| | Spinal manipulation | Haas et al. ⁴⁶ , 2014 | 400 adults with cLBP; mean age = 41 (SD = 14); gender = 50%; race = 85% white; pain duration > 3 months; pain intensity = 52 (VAS); function = 45 (100 pt scale) | RCT of dose of SM (0, 6, 12, 18 sessions over 6 weeks) vs. light massage | SM of variable # of
sessions; light
massage of variable
sessions | pain intensity (modified vonKorf scale) and function at 12 and 24 weeks; 80% power to detected a between-group difference of 10 pts; pre- specified primary analysis of regression models to identify linear effect of SM dose. | At 12 weeks, 20 points improvement that was sustained to 52 weeks; maximum effect observed at 12 SM sessions (8.6 pain and 7.6 disability points); however at 52 weeks, max effect was for 18 visits | Supports use | | Spinal
manipulation | Hadler
et al. ⁴⁷ ,
1987 | 54 adults with
acute LBP; age =
(20 - 40); gender
= 42% female;
race = n/a; pain
duration < 4
weeks; pain
function (11,
RMDQ) | RCT of SM vs.
Moblization | SM = HVLA; Mobilization = side- lying position with LVLA maneuver, which was not considered a "thrust". 2 treatment sessions over 2 weeks | function
(RMDQ); power
not specified,
nor MCID | both groups
improved (-7 pt
change), but no
sig diff between
groups | Not relevant | |------------------------|---|---|---------------------------------------|---|---|---|--------------| | Spinal
manipulation | Hoehler
et al. ⁴⁸ ,
1981 | 95 adults with LBP (acute & chronic); mean age = 31; 59% male; pain duration = n/a; pain intensity = 3.5 (scale: 1-5 with 5 most severe) | Pragmatic RCT
of SM vs
massage. | SM = HVLA;
massage = Swedish
type. Up to 8
sessions over 60
days. | pain intensity (5
pt scale); power
not stated,
MCID not stated | both groups
improved, but
no sig diff
between
groups | Not relevant | | Spinal manipulation | Hoiriis et al. ⁴⁹ , 2004 | 192 adults with subacute LBP; mean age = 42; gender = 89% male; race = n/a; pain duration = 3.7 weeks; pain intensity 4.2 (VAS); function = 24 (ODI) | RCT of SM with placebo medicine, muscle relaxants with sham SM, vs. placebo medicine with sham SM, over 2 weeks | SM = HVLA to multiple regions of spine, as well as mechanically assisted manipulation to C1 vertebra. Sham-SM = positioned on drop table with hand pressure but no thrust, MAM but no thrust. Medication = clobenzaprine HCl, 5 mg; carisoprodol, 350 mg; methocarbamol, 750 mg. Placebo medicine = inactive medication with identical appearance to active medication. SM had 8 visits over 2 weeks. | pain intensity (VAS) and ODI; power not stated; MCID not stated | For pain intensity: SM > medication > placebo at 2 weeks; SM > medication =
placebo at 4 weeks. For function: all groups improved and no significant differences. | Supports use | |---------------------|-------------------------------------|--|---|---|---|---|--------------| |---------------------|-------------------------------------|--|---|---|---|---|--------------| | Spinal manipulation | Hondras
et al. ⁵⁰ ,
2009 | 244 adults with
LBP; mean age
= 63; gender =
44% female;
race = 96%
white; pain
duration = 12
years; pain
intensity = ?;
function = 6.4
(RMDQ) | RCT of HVLA
SM, LVVA SM,
vs minimal
conservative
medical care
(MCMC) | HVLA SM was sidelying diversified lumbar adjustment; LVVA was flexion-distraction or "Cox" technique; maximum of 12 sessions, 2-3/wk for 2 wk, then 2/wk for 2 wk, & then 1/wk for 2 wk. MCMC was primary care using medication and advice. All participants got recommendations for specific exercises for home. | RMDQ; 81%
power to detect
2.2 pt difference
on 24-item
RMDQ. | HVLA & LVVA
SM > MCMC at
6 weeks for
RMDQ (-2.9
and 2.7 vs
1.6 pts,
respectively). | Supports use | |------------------------|---|--|--|---|--|--|--------------| | Spinal
manipulation | Hsieh et al. ⁵¹ , 2002 | 200 adults with subacute LBP; mean age = 49; gender = 67% male; race = 77% white, 13% asian, 6% hispanic; pain duration = 11 weeks; pain intensity = 3.7 (VAS 0 - 10cm); function = 7 (RMDQ) | RCT of back
school, SM,
myofascial
therpy, vs. SM
+ myofascial
therapy. Back
school weekly
sessions for 3
week. Others
had 3
sessions/week
for 3 weeks. | Back school = didactic presentation and individualized instruction in activites of daily living. SM = HVLA adjustments. Myofascial therapy = cold-stimulated muscle stretch/contraction, muscle compression/massa ge, hot packs. | pain intensity
(NRS) and
RMDQ; power
not stated;
MCID not stated | For pain and function, all groups improved at 3 weeks, with no significant differences between groups. | Not relevant | | Spinal | Hurwitz | 681 adults with | Pragmatic, | SM = HVLA SM, | pain intensity | For pain | Does not | |--------------|------------------------|-------------------|------------------|------------------------|----------------|-----------------|-------------| | manipulation | et al. ⁵² , | LBP; mean age | randomized, | diversified. SM + | (NRS) and | intensity, all | Support use | | | 2002 | = 51 (SD 17); | comparative | modalies = SM + | RMDQ: MCID = | groups | | | | | gender = 52% | effectiveness of | heat, ice, ultrasound, | 2 pt and 3 pt | improved | | | | | female; race = | SM, SM + | and/or electrical | change, | compared to | | | | | 60% white, 30% | modalities, | stim. Primary care = | respectively; | baseline at 2, | | | | | Hispanic, 4% | Primary Care, | advice, exercise | power not | 6, & 26 weeks, | | | | | Asian, 3 % black; | PC + PT | recommendations, | stated | though majority | | | | | pain duration = | | analgesic | | of improvement | | | | | 26% acute, 16% | | medication, muscle | | was at 2 | | | | | subacute, 59% | | relaxants, NSAIDS. | | weeks. No | | | | | chronic; pain | | PC + PT = PC + | | clinically | | | | | intensity $= 5$ | | physical therapist | | significant | | | | | (NRS); function = | | advice + heat, cold, | | differences | | | | | 11 (RMDQ) | | US, electrical stim, | | between | | | | | | | manual therapy, | | groups. For | | | | | | | traction, supervised | | function, all | | | | | | | exercise. | | groups | | | | | | | | | improved | | | | | | | | | compared to | | | | | | | | | baseline at 6 & | | | | | | | | | 26 weeks, with | | | | | | | | | the greatest | | | | | | | | | improvement at | | | | | | | | | 26 weeks, but | | | | | | | | | no clinically | | | | | | | | | significant | | | | | | | | | differences | | | | | | | | | between | | | | | | | | | groups. | | | Spinal
manipulation | Pope et al. ⁵³ , 1994 | 164 adults with LBP, mean age = 32 (18-55); gender = 62% male; race = n/a; pain duration > 6 months for 61%; pain intensity = n/a; function = n/a | RCT of SM,
massage,
corset, vs.
transcuteaneou
s muscle
stimulation
(TMS) | SM = HVLA (3 sessions/wk for 3 weeks; massage = 15 min of Swedish massage, 3 sessions/wk for 3 weeks; TMS = 8 hrs/day continuous stim while mobile; corset = canvas corset with metal stays worn continuously while awake | pain intensity (VAS) and function (Range of Motion flx/ext); power not stated, MCID not stated | all groups improved on both outcomes, but no significant difference between groups at 3 weeks. Post- hoc calculation of statistical power indicated study was substantially under-powered. | Not relevant | |------------------------|---|---|---|---|--|--|--------------| | Spinal
manipulation | Schneid
er et
al. ⁵⁴ ,
2015 | 107 adults with subacute LBP (<12 weeks onset); mean age = 41 (SD = 14); gender = 63% female, race = 63% white; pain duration = <3 months; pain intensity = 5.7 (NRS); function = 34 (ODI). | RCT of HVLA
SM,
Mechanical
Adjusting
Device, vs.
Usual Medical
Care | HVLA SM;
mechanical adjusting
device (Activator);
usual medical care;
8 treatments over 4
weeks. Usual care =
advice, NSAIDS,
stay active, avoid
prolonged bed rest. | ODI; 80% power
to detect MCID
OF 10-pt
difference on
ODI | At 4 weeks,
HVLA SM (-8
pts) > Activator
= UC. | Supports | | Spinal
manipulation | Sutlive
et al. ⁵⁵ ,
2009 | 60 adults with acute LBP, active duty military; mean age = 25; gender = 48% female; race = n/a; pain duration = 14 | RCT of 2 types
of SM:
"lumbopelvic"
and "lumbar
neutral gap"
SM. | SM was performed in a single session; both performed in a side-laying position by a therapist. | pain intensity
(VAS) and
function (ODI);
power not
stated, MCID
not stated | Significant reduction in pain and improvement in function for both groups, but no sig diff between | Not relevant | | | | days; pain
intensity = 5.9
(NRS); function =
39.5 (ODI) | | | | groups. | | |------|-----------------------------------|---|---|--
--|--|----------| | Yoga | Saper et al. ⁵⁷ , 2013 | 95 adults with cLBP, mean age = 47, gender = 76% female, race = 55% black, 18% white; pain duration >1 year = 76%; pain intensity = 6.9 (NRS); function = 13.7 (RMDQ) | RCT of dose of
yoga, 1/wk vs.
2/wk for 12
weeks. | Hatha yoga = 75-min classes for 12 weeks, + home practice. Usual care for both groups. | pain intensity (NRS) and function (RMDQ); 80% power to detect MCID of 1.5 pts & 3.0 pts, respectively | No difference was seen between the two doses of yoga. At 12 weeks, both groups significant improved on pain (-2.2 pts NRS) and function (-5 pts RMDQ), but no significant between group differences. | Unknown | | Yoga | Saper et al. ⁵⁸ , 2009 | 38 adults with cLBP; mean age = 44; gender = 83% female; race = 83% minority; pain duration > 12 weeks; pain intensity > 4 (NRS; actual = 7.1 mean); RMD = 15 | RCT of yoga
vs. wait list
control | Hatha yoga = 12 weekly, 75 min classes; wait list group was offered yoga after 26 weeks; both groups had usual care & received a self-care pain management book. | pain intensity (NRS) and RMDQ at 12 weeks; MCID = 2 pts NRS, and 30% decrease RMDQ; statistical power not stated | Significant reduction in pain intensity (-2.3 vs 0.4 pts) and improved function (-6.3 vs 3.7 pts) compared to wait list. | Supports | | Yoga | Sherma
n et al. ⁵⁹ ,
2005 | 101 adults with cLBP; mean age = 44 (SD 13); gender = 66% female; race = 80% white; pain duration = 83% >1 year; pain intensity = 5.5 (bothersome 0 - 10); function = 8.4 (RMDQ) | RCT of yoga,
exercise, vs
usual care | Yoga = viniyoga, 12 weekly 75-min classes, with home practice. Exercise = 12 sessions of combination of strengthening and aerobic exercise. Usual care = self- care book | pain bothersomenes s (0 - 10) and modified Roland Disability Questionnaire; MCID = 1.5 pts & 2.5 pts, respectively; 80% power to detect 2.7 pts on RMDQ | yoga > exercise > usual care at 12 weeks for function (-3.4 for yoga vs. UC; -1.8 for yoga vs. exercise), but not for bothersomenes s. | Supports | |------|--|--|---|--|--|--|-----------------| | Yoga | Sherma
n et al. ⁶⁰ ,
2011 | 228 adults with cLBP; mean age = 48 (SD = 10); gender = 64% female (yoga group = 67% female), race = 87% white; duration of pain = 11 yrs (SD 10); pain intensity = 4.7 (Bothersomenes s); function = 9.1 (RMDQ) | RCT of yoga,
stretching, and
usual care | yoga = viniyoga: 1 hr
sessions weekly for
12 weeks; stretching:
75 min sessions
weekly for 12 weeks;
usual care + self-
care book on LBP | RMDQ and pain
bothersomenes
s at 12 weeks;
statistical power
> 80% to detect
MCID of 2.5 pts,
or 1.7 pts,
respectively,
between groups | yoga = stretching > usual care at 12 weeks, with modest improvements in function (-2 pts) & pain bothersomenes s (-1 pt) | Supports use | | Yoga | Williams
et al. ⁶¹ ,
2009 | 90 adults with cLPB; mean age = 48; gender = 77% female; race = 93% white; pain duration = 63 months; pain intensity = 41 (VAS); function = | RCT of yoga
vs. wait list
control | lyengar yoga = 24
weeks of 90-min
classes, 2/week.
Wait-list = self-
directed medical
care, & offered yoga
at end of study
period | pain intensity
(VAS) and
function (ODI);
89% power to
detect 6-pt.
change in ODI
(pre-post);
MCID not stated | significant
difference for
pain intensity (-
13 mm) and
function (-5
pts). | Supports
use | | | | 24 (ODI) | | | | | | |------|--|---|---|--|--|--|-----------------| | Yoga | Williams
et al. ⁶² ,
2005 | 44 adults with LBP; mean age = 48; gender = 68% female; race = 96% white; pain duration => 3 months; pain intensity = 2.8 (VAS); function = 18 (PDI 0 - 70) | RCT of yoga
vs. educational
control | Yoga = Iyengar form,
16 90-min, weekly
classes, Usual Care.
Usual Care =
Educational control =
usual care + 16
weekly newsletters. | function = Pain Disability Index (PDI): 0 - 70, with higher scores => higher disability; statistical power not stated; MCID not stated | yoga > Usual
care at 12
weeks. NOTE -
hard to
decipher actual
change score. | Supports
use | ## Footnotes cLBP = chronic low back pain HVLA = high velocity, low amplitude LVLA = low velocity, low amplitude MVLA = medium velocity, low amplitude LBP = low back pain MCID = minimal clinically important difference NRS = numeric rating scale ODI = Oswestry Disability index ^a Abbreviations: OMT = osteopathic manipulative therapy RCT = randomized clinical trial RMDQ = Roland-Morris Disability Questionnaire ROM = range of motion SD = standard deviation SM = spinal manipulation VAS = visual analog scale