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1.  INTRODUCTION 
 
A specialized experimental design called sequential multiple assignment randomized 
trials (SMART) has been developed to support the investigation of a sequence of 
treatments in a principled way.  In Scott et al1, we presented statistical methodology and 
an evaluation of that methodology for the design and analysis of simple SMART trials.  
We also introduced and evaluated two new methods for sizing SMART trials.  In this 
report, we present the simulation designs and the programs used to evaluate the sample 
size formulae for the SMART design presented in Scott et al1. 
 
2.  THE SMART DESIGN AND RELATED RESEARCH QUESTIONS 
 
We assume that we have data from a SMART design modeled in the following way: 
there are two options for the initial treatment followed by two treatment options for non-
responders and one treatment option for responders.  A representation of this design is 
presented in Figure 1.  Note that this design is balanced; that is, the two treatment options 
for non-responders are the same regardless of initial treatment. 
 
We use the following notation.  A1 is the indicator (0 or 1) for the initial treatment, R 
denotes the response to the initial treatment (non-response = 1 and response = 0), A2 is 
the treatment indicator (0 or 1) for non-responders, and Y denotes a continuous final 
outcome.  We use the convention of designating A2=0 for responders.  We further assume 
the patients are randomized equally to the two treatment options at each level; that is, 
Pr{A1=1}= Pr{A1=0=0.5 and Pr{A2=1|R=1, A1=j}= Pr{A2=0|R=1, A1=j}=0.5, j∈{0,1}. 
 
A summary of the four research questions we focus on answering with this SMART 
design is presented in Table 1; this is the generic version of Table 2 in Scott et al1.  Note 
that Analyses 1 and 2 concern the components of an adaptive treatment strategy, and 
Analyses 3 and 4 concern strategies as a whole. 
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Figure 1.  A SMART design to develop adaptive treatment strategies. 
 
 

Table 1.  Four research questions of interest  
to guide the development of adaptive treatment strategies 

 
Analysis Research Question Null Hypothesis 

Two analyses that concern components of adaptive treatment strategies 
1 What is the effect of initial treatment 

assignment on long term outcome given 
specified treatments provided in the 
interim? 

The mean long term outcome for all patients 
assigned to A1=1 initially will be equal to the 
mean long term outcome of all patients assigned 
to A1=0. 

2 Considering only patients who did not 
respond to the initial treatment, what is the 
best subsequent treatment?  

Considering only patients who did not respond to 
the initial treatment, the average long term 
outcome for those provided subsequently with 
A2=1 will be the same as the long term average 
of those provided with A1=0.  

Two analyses that concern entire adaptive treatment strategies 
3 What is the difference in long term 

outcomes between two strategies that have 
different initial treatments, e.g. A1=1, A2=1 
vs. A1=0, A2=0?  

The mean long term outcome for all those given 
strategy A1=1, A2=1 will be equal to the long 
term mean outcome of all given treatment 
strategy A1=0, A2=0. 

4 Which treatment strategy produces the best 
outcome?  

This is an estimation problem not a hypothesis 
testing problem. 
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3.  TEST STATISTICS AND SAMPLE SIZE FORMULAE 
 

In this section, we present the test statistics and sample size formulae for the four 
different types of research questions summarized in Table 1.  Without loss of generality, 
in Analysis 3, for comparing two strategies, (a1, a2) and (b1, b2), that have different initial 
treatments, we let a1=1 and b1=0. 
 
3.1  Statistics for Different Analyses 
 
The test statistics for Analyses 1-3 are presented in Table 2; the method for performing 
Analysis 4 is also given in Table 2.  Note that Analyses 1-3 are hypotheses tests and that 
Analysis 4 is not a hypothesis test.  The test statistics for Analyses 1 and 2 are the 
standard test statistics for a two group comparison with large samples2 and are not unique 
to the SMART design.  The estimator of a strategy mean, used in both Analysis 3 and 
Analysis 4, as well as the test statistic for Analysis 3 are given in Murphy3.  In large 
samples, the test statistics used in Table 2 are normally distributed (with mean zero under 
the null hypothesis of no effect). 
 
 

Table 2.  Test statistics for each of the possible hypotheses 
 

Type of Analysis Test Statistic 
1(1) ( )

0  A1

0  A1
2

1  A1

1  A1
2

0  A11  A1

S S
Y -Y  Z

=

=

=

=

==

+

=

NN

 

where NA1=i denotes the number of subjects who received i as the initial treatment 
2(1) ( )

0A2 1,R

0A2 1,R
2

1A2 1,R

1A2 1,R
2

0A2 1,R1A2 1,R

S S
Y -Y  Z

==

==

==

==

====

+

=

NN

 

where NR=1, A2=i denotes the number of non-responders who received i as the 
second treatment 

3(2) ( )
b2A2 ,0A1

2
a2A2 1,A1

2

b2A2 ,0A1a2A2 1,A1

ˆ ˆ

ˆ -ˆ
  Z

====

====

+
=

ττ

μμN  

where N is the total number of subjects, and a2 and b2 are the second treatments 
in the two prespecified strategies being compared. 

4 Choose largest of A1 1, A2 1 A1 0, A2 1 A1 1, A2 0 A1 0, A2 0ˆ ˆ ˆ ˆ , , , μ μ μ μ= = = = = = = =
 

(1) Y  and 2S  the sample mean and the sample variance; the subscript on N denotes the group of subjects  
(2) See Table 3 for a definition of μ̂  and 2τ̂ . 
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Table 3.  Estimators for strategy means and  
estimators for variance of estimator of strategy means. 

Data for ith patient is of the form (A1i, Ri, A 2i, Yi),  
where A1i, Ri, A 2i, and Yi are defined as in Section 4, and N is the total sample size. 

 

Strategy sequence 
(a1, a2) a2A2 a1,A1ˆ ==μ :  Estimator for strategy mean 
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=

=
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3.2  Sample Size Calculations 
 
All sample size formulae assume a two-tailed z-test.  Let α be the desired size of the 
hypothesis test and 1–β denote the power of the test; let zα/2 be the standard normal (1–
α/2) percentile.  Approximate normality of the test statistic is assumed throughout. 
 
In order to calculate the sample size, one must specify the desired detectable standardized 
effect size, denoted here by δ.  We use the definition for standardized effect size found in 
Cohen4: the standardized effect size between two groups is the difference between the 
means of the two groups divided by the square root of the pooled variance, which is the 
square root of the average of the variances of the two groups being compared.  All of the 
sample size formulae make the working assumption that the variances of the two groups 
under consideration are equal.  The definition of the variance changes with the analysis 
under consideration; we will explicitly define the variance assumption as we present each 
sample size formulae.  In Table 4, we summarize the standardized effect sizes for the 
various analyses we are considering.   
 
 

Table 4.  Standardized effect sizes for the four analyses in Table 3 
 

Analysis Formula for Standardized Effect Size δ 

1 
2

0]  A|Var[Y  1]  A|Var[Y
0]  A| E[Y- 1]  A|E[Y  
11

11

=+=
==

=δ  

2 
2

0]  A 1,  R|Var[Y  1]  A 1,  R|Var[Y

0] A 1,  R| E[Y- 1]  A 1,  R|E[Y  
22

22

==+==

====
=δ  

3 2
b2]  A 0,  A|Var[Y  a2]  A 1,  A|Var[Y

b2]  A 0,  A| E[Y- a2]  A 1,  A|E[Y  
2121

2121

==+==
====

=δ  

where a2 and b2 are the second components in the two prespecified strategies 
being compared. 

4 2
b2]  A b1,  A|Var[Y  a2]  A a1,  A|Var[Y

b2]  A b1,  A| E[Y- a2]  A a1,  A|E[Y  
2121

2121

==+==
====

=δ  

where (a1, a2) = strategy with the highest mean outcome,  (b1, b2) = strategy with 
the next highest mean outcome. 

 
 
The sample size formulae for each of the analyses in Table 1 are summarized in Table 5.  
Each formula makes certain working assumptions which are presented below.  The 
working assumptions are only used to size the SMART design and are not used to 
analyze the data from the trial. 
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Working assumptions for sample size formula N1: 
1. The variance of outcome Y given the first treatment A1=1 is equal to the variance 

of outcome Y given the first treatment A1=0; i.e. σ2 = Var[Y|A1=1] = 
Var[Y|A1=0]. 

 
Working assumptions for sample size formula N2: 

1. The variance of outcome Y for non-responders who were given second treatment 
A2=1 is equal to the variance of outcome Y for non-responders who were given 
second treatment A2=0; i.e. σ2 = Var[Y|R=1, A2=1] = Var[Y|R=1, A2=0]. 

2. The intermediate non-response rates are equal; that is, that the probability of non-
response for a patient given initial treatment A1=1 is the same as the probability of 
non-response for a patient given initial treatment A1=0.  We will denote this 
identical non-response rate by p. 

 
Working assumptions for sample size formula N3a (sample size varies by non-response 
rate): 

1. The variance of outcome Y given treatment strategy (A1=1, A2=a2) is equal to the 
variance of outcome Y given treatment strategy (A1=0, A2=b2); i.e. σ2 = 
Var[Y|A1=1, A2=a2] = Var[Y|A1=0, A2=b2]. 

2. The variability of the outcome Y around the strategy mean (A1=1, A2=a2), among 
either responders or non-responders, is less than the variance of the strategy mean 
and similarly for strategy (A1=0, A2=b2). 

3. The intermediate non-response rates are equal; that is, p = Pr{R=1|A1=1} = 
Pr{R=1|A1=0}. 

 
Working assumptions for sample size formula N3b (sample size is invariant to the non-
response rate): 

1. The variance of outcome Y given treatment strategy (A1=1, A2=a2) is equal to the 
variance of outcome Y given treatment strategy (A1=0, A2=b2); i.e. σ2 = 
Var[Y|A1=1, A2=a2] = Var[Y|A1=0, A2=b2]. 

2. The sample size formulae use the working assumption that the intermediate non-
response rates are both equal to 1; that is, p = 1. 

 
Working assumptions for sample size calculation N4: 

1. The marginal variances of the final outcome given the strategy are all equal and 
we denote this variance by σ2.  This means that, σ2 = Var[Y|A1=a1, A2=a2] for all 
(a1, a2) in {(1,1), (1,0), (0,1), (0,0)} 

2. The sample sizes will be large enough so that (a1, a2)μ̂  is approximately normally 
distributed. 

3. The correlation between the final outcome Y given treatment strategy (1, 1) and Y 
given treatment strategy (1, 0) is the same as the correlation between Y given 
treatment strategy (0, 1) and Y given treatment strategy (0, 0). 
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Table 5.  Sample size formulae for the four analyses of interest. 
 

Analysis Formula for Standardized Effect Size δ 

1 22 (∗ )+∗∗= )1/(22  N 2/1 δβα zz  

2 p/)(1/(22  N 2/2
22 ∗)+∗∗= δβα zz  

22 ∗−∗+∗∗∗)+∗= )(1/))p)(11 p2(2((2  N 2/3a δβα zz  

3 
22 ∗∗)+∗= )(1/4(2  N 2/3b δβα zz  

4 Algorithm(1) 

(1) See Appendix for Matlab code; see Scott et al1 for more details. 
 
 
4.  SIMULATION DESIGN FOR THE EVALUATION OF SAMPLE SIZE 
FORMULAE 
 
In this section, we present the method for designing the simulations to evaluate the 
sample size formulae presented in Section 3.2.  Since the sample size formulae for 
Analyses 1 and 2 are standard formulae, we focus on evaluating the newly developed 
sample size formulae for Analyses 3 and 4.   For each analysis, we present simulation 
parameters for generating data that follows the working assumptions; these datasets will 
be used in order to evaluate the accuracy of the sample size formulae for Analyses 3 and 
4 (i.e. to see if we in fact achieve the desired power).   
 
We also present simulation parameters for generating data that tests the robustness of the 
sample size formulae for Analyses 3 and 4.  To test the robustness of a given formula, we 
calculate a sample size given by the relevant formula in Section 4.2, and then simulate 
data sets of this sample size that do not satisfy the working assumptions in one of the 
following ways: 

• the intermediate non-response rates to first level treatments are unequal, i.e. 
Pr{R=1|A1=1} ≠ Pr{R=1|A1=0},  

• the variances relevant to the analysis of interest are unequal, 
• the distribution of the final outcome, Y, is right skewed (thus for a given sample 

size, the test statistic is more likely to have a non-normal distribution). 
 
The sample sizes used for the simulations were chosen to give a power level of 0.90 and a 
type I error of 0.05 when one of Analyses 1-3 is used to size the trial, and a 0.90 
probability of choosing the best strategy for Analysis 4 when it is used to size the trial; 
these sample sizes are shown in Table 6.   
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We sized the studies to detect a prespecified standardized effect size of 0.2 or 0.5.  We 
simulated data with intermediate non-response rates of 0.5, 0.7 and 0.9 and with mean 
outcomes for the responders usually higher than those for non-responders. 

 
 

Table 6.  Sample Sizes Used for Simulations(1)(2) 
All entries are for total sample size 

 

Effect Size 
δ 

Non-
response 

rate(3) 
p 
 

Analysis # 1 Analysis #2 Analysis #3 
(sample size 
varies by p) 

Analysis #3 
(sample size 
invariant to 

p) 
 

Analysis #4 

δ =  0.20       
 p = 0.5 1056  2112  1584 2112 608 
 p = 0.7 1056  1509  1796 2112 608 
 p = 0.9 1056  1174 2007 2112 608 
δ =  0.50       
 p = 0.5 169  338 254 338 97 
 p = 0.7 169  241 287 338 97 
 p = 0.9 169  188 321 338 97 
 (1) All entries assume each statistical test is two tailed of size α = 0.05 and power 1-β = 0.90; size is not required for 
Analysis 4 since it is not a hypothesis test. 
(2)  Analysis 4 is not a hypothesis test; we choose the sample size so that the probability that we choose the best 
treatment, given such a “best” treatment exists (i.e. given that there is a treatment strategy that has a higher mean 
outcome than the rest) is 1–β. 
(3)  In each formula, non-response rates are assumed to be equal, i.e. p=Pr{R=1|A1=1}=Pr{R=1|A1=0}. 

 
 
For Analysis 1-3, power is estimated by the proportion of times out of 1000 simulations 
that the null hypothesis is correctly rejected; for Analysis 4, the probability of choosing 
the best strategy is estimated by the proportion of times out 1000 simulations that the 
correct strategy with the highest mean is chosen. 
 
For Analysis 3, we need to specify the strategies of interest, and for the purposes of these 
simulations, we will compare strategies (A1=1, A2=1) and (A1=0, A2=0).  For the 
simulations to evaluate the robustness of the sample size calculation for Analysis 4, we 
choose (A1=1, A2=1) to always have the highest mean outcome and generate the data 
according to two different “patterns”: 1) the strategy means are all different and 2) the 
mean outcomes of the other three strategies besides (A1=1, A2=1) are all equal.  In the 
second pattern, it is more difficult to detect the “best” strategy because the highest mean 
must be distinguished from all the rest, which are all the “next highest”, instead of just 
one next highest mean. 
 
4.1  How the Data Was Simulated 
 
Each simulated data set of size N consists of N vectors of the form (A1, R, A 2, Y).  The 
entries in each vector are generated in the following way: 
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1. Generate A1 from a Bernoulli distribution with mean 0.5; that is, A1=0 with 
probability 0.5 and A1=1 with probability 0.5.  This step represents the 
randomization between the two options for initial treatment. 

2. Generate a response R to treatment A1 from a Bernoulli distribution with mean 
pa1, where pa1=Pr{R=1|A1=a1}, i.e. the non-response rate for treatment A1=a1.   

3. Next, generate the second treatment for non-responders from a Bernoulli 
distribution with mean 0.5; again, this step represents the randomization between 
the two options for the second treatment.  If R=0, then we use the convention A2 = 
0 (see Table 7). 

4. Finally, generate the final outcome Y given the history A1, R, A2.  We assume 
that this final outcome given the past, Y|A1, R, A2,  is normally distributed with 
mean E[Y|A1, R, A2] and variance Var[Y|A1, R, A2].  Table 7 shows that there are 
six possible histories, and we must specify a mean and variance for each of these 
groups. 

 
 

Table 7.  Dummy coding to reflect treatments potentially tested by the SMART design 
 

 
Sub-Group Number 

 
Initial Treatment 

A1 

 
Response to Initial 

Treatment 
R 

 
0 = Response 

1 = Non-response 
 

 
Second Treatment for 

Non-responders 
A2 

 

1 1 1 1
2 1 1 0
3 1 0 0
4 0 1 1
5 0 1 0
6 0 0 0

 
 
In summary, the model for generating a dataset is: 

1. A1 ~ Bern(0.5) 
2. R|A1 ~ Bern(pA1), where 

a. p1 = Pr{R=1|A1=1}, the non-response rate when treatment A1=1  
b. p0 = Pr{R=1|A1=0}, the non-response rate when treatment A1=0 

3. A2|R=1 ~Bern(0.5); A2|R=0 is coded as 0. 
4. Y|A1, R, A2 ~ N( E[Y|A1, R, A2], Var[Y|A1, R, A2]), with notation 

a. νa1, r, a2 = E[Y|A1=a1, R=r, A2=a2] and  
b. ς2

a1, r, a2 = Var[Y|A1=a1, R=r, A2=a2], 
and the parameters that must be specified to simulate a data set are: 

• the two non-response rates, p0 and p1, 
• the six means for the final responses {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0}, and  
• the six variances for the final responses {ς2

1,1,1, ς2
1,1,0, ς2

1,0,0, ς2
0,1,1, ς2

0,1,0, ς2
0,0,0}. 
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For the simulations we performed, in all cases except for the simulations which challenge 
the equal variance assumption, we set σ2 = 100. 
 
4.2  Simulation Parameters vs. Parameters for the Effect Size of Interest 
 
One detail to address is the relationship between the means and variances specified in the 
simulation design and the means and variances required for the specified effect size for 
the particular analysis of interest (Table 4).  The variance that is required to calculate the 
sample size for a particular effect size is different than the ones that are specified in the 
simulations.  Therefore, we must define the relationship between the means and variances 
in the simulation design (the conditional variances) and the means and variances in the 
specified effect size for the analysis of interest (the marginal variances). 
 
Here we derive the means and variances required for each analysis in terms of the 
conditional means and variances specified in the simulation model. 
 
We will use the following representation for the conditional mean:  
E[Y|A1=a1, R=r, A2=a2] = γ1 + γ2A1 + γ3R + γ4A1R + γ5RA2 + γ6A1RA2.  For reference, 
here are the means for the six groups in Table 7 in terms of these “γ”s: 

• E[Y|A1=1, R=1, A2=1] = γ1 + γ2 + γ3 + γ4 + γ5 + γ6  
• E[Y|A1=1, R=1, A2=0] = γ1 + γ2 + γ3 + γ4  
• E[Y|A1=1, R=0, A2=0] = γ1 + γ2  
• E[Y|A1=0, R=1, A2=1] = γ1 +  γ3 + γ4 + γ5 

• E[Y|A1=0, R=1, A2=0] = γ1 +  γ3 

• E[Y|A1=0, R=0, A2=0] = γ1. 
 
Throughout the derivations, note that since A1, A2, and R are coded as binary variables, 
then A1

2=A1, A2
2=A2, and R2=R. 

 
Means and Variances for Analysis 1 
 
Goal: Find a formula for E[Y|A1=a1] and Var[Y|A1=a1] in terms of  E[Y|A1=a1, R=r, 
A2=a2] and Var[Y|A1=a1, R=r, A2=a2]. 
 
Derivation of E[Y|A1=a1]: 
 
E[Y|A1=a1]  = E[ E[Y|A1, R, A2] |A1=a1], (Law of Total Expectation) 
 = E[γ1 + γ2A1 + γ3R + γ4A1R + γ5RA2 + γ6A1RA2 |A1=a1] 
 = γ1 + γ2a1 + (γ3 + γ4a1)E[R|A1=a1] + (γ5 + γ6a1)E[RA2|A1=a1]. 
 
Now,  
E[RA2|A1=a1] = 0*0*Pr{R=0, A2=0|A1=a1} + 1*0*Pr{R=1, A2=0|A1=a1}  

   + 1*1*Pr{R=1, A2=1|A1=a1} 
 = 1*1*Pr{R=1, A2=1|A1=a1} 
 = (0.5)Pr{R=1|A1=a1}. 
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Also, note that E[R|A1=a1]=pa1, the non-response rate for those given A1=a1.  Therefore, 
we have 
 
 

E[Y|A1=a1] = γ1 + γ2a1 + pa1(γ3 + γ4a1 + 0.5γ5 + 0.5γ6a1). 
 
 
Derivation of Var[Y|A1=a1]: 
 
Note that Var[Y|A1=a1] = E[Y2|A1=a1] − E[Y|A1=a1]2.  
 
Using the result for E[Y|A1=a1] above: 
E[Y|A1=a1]2 = (γ1 + γ2a1 + pa1(γ3 + γ4a1 + 0.5γ5 + 0.5γ6a1))2 
 = (γ1 + γ2a1)2 + 2pa1(γ1 + γ2a1)(γ3 + γ4a1 + 0.5(γ5 + γ6a1)) 

   + pa1
2(γ3 + γ4a1 + 0.5(γ5 + γ6a1))2. 

 
Next,  
E[Y2|A1=a1] = E[ E[Y2|A1, R, A2] |A1=a1], (Law of Total Expectation) 
 = E[ Var[Y|A1, R, A2] + E[Y|A1, R, A2]2 |A1=a1] 
 = E[ Var[Y|A1, R, A2] |A1=a1]  

   + E[(γ1 + γ2A1)2 + 2R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1)  
          + R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |A1=a1] 

 = E[ Var[Y|A1, R, A2] |A1=a1]  + (γ1 + γ2a1)2  
   + 2E[R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2a1)|A1=a1] 
   + E[R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2

 |A1=a1]. 
 
Using basic properties of conditional expectation, we have the following. 
 
E[R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1)|A1=a1] 
 = E[R|A1=a1] E[(γ3 + γ4A1 + γ5A2 + γ6A1A2) |A1=a1] E[(γ1 + γ2A1) |A1=a1] 
 = pa1 (γ3 + γ4a1 + γ5E[A2] + γ6a1E[A2]) (γ1 + γ2 a1) 
 = pa1 (γ1 + γ2a1)(γ3 + γ4a1 + 0.5(γ5 + γ6a1)) 
 
E[R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |A1=a1] 
 = E[R(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |A1=a1] 
 = E[R|A1=a1] E[(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |A1=a1] 
 = pa1 E[(γ3 + γ4A1)2 + 2(γ3 + γ4A1)(γ5A2 + γ6A1A2) + (γ5A2 + γ6A1A2)2 |A1=a1] 
 = pa1 ((γ3 + γ4a1)2 + 2(γ3 + γ4A1)(γ5 + γ6A1)E[A2|A1=a1]  

          + (γ5 + γ6A1)2 E[A2|A1=a1]) 
 = pa1 ((γ3 + γ4a1)2 + 2(γ3 + γ4A1)(γ5 + γ6A1)E[A2] + (γ5 + γ6A1)2 E[A2]) 
 = pa1 ((γ3 + γ4a1)2 + 2(γ3 + γ4a1)(γ5 + γ6a1)(0.5) + (γ5 + γ6a1)2(0.5)) 
 
Plugging back into Var[Y|A1=a1] = E[Y2|A1=a1] − E[Y|A1=a1]2 we have the following: 
Var[Y|A1=a1] = E[ Var[Y|A1, R, A2] |A1=a1]  + (γ1 + γ2a1)2  

+ 2pa1(γ1 + γ2a1)(γ3 + γ4a1 + 0.5(γ5 + γ6a1)) 
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+ pa1 ((γ3 + γ4a1)2 + (γ3 + γ4a1)(γ5 + γ6a1) + (γ5 + γ6a1)2 (0.5)) 
− (γ1 + γ2a1)2 − 2pa1(γ1 + γ2a1)(γ3 + γ4a1 + 0.5(γ5 + γ6a1)) 
− pa1

2(γ3 + γ4a1 + 0.5(γ5 + γ6a1))2. 
Cancelling out terms gives us 
Var[Y|A1=a1] = E[ Var[Y|A1, R, A2] |A1=a1]  +  

+ pa1 ((γ3 + γ4a1)2 + (γ3 + γ4a1)(γ5 + γ6a1) + (γ5 + γ6a1)2 (0.5)) 
− pa1

2(γ3 + γ4a1 + 0.5(γ5 + γ6a1))2. 
 
Using algebra to simplify, we get 
 
 
Var[Y|A1=a1] = E[ Var[Y|A1, R, A2] |A1=a1] + pa1 (1−pa1) ( γ3 + γ4a1 + 0.5(γ5 + γ6a1))2 
                          + pa1 (0.5(γ5 + γ6a1))2

. 
 
 
 
Means and Variances for Analysis 2 
 
Goal: Find a formula for E[Y|R=1, A2=a2] and Var[Y|R=1, A2=a2] in terms of  
E[Y|A1=a1, R=r, A2=a2] and Var[Y|A1=a1, R=r, A2=a2]. 
 
Derivation of E[Y|R=1, A2=a2]: 
 
E[Y|R=1, A2=a2]  = E[ E[Y|A1, R, A2] |R=1, A2=a2], (Law of Total Expectation) 
 = E[γ1 + γ2A1 + γ3R + γ4A1R + γ5RA2 + γ6A1RA2 |R=1, A2=a2] 
 = γ1 + γ3 + (γ2 + γ4)E[A1|R=1] + γ5a2 + γ6 a2E[A1| R=1] 
 
Using Bayes Rule,  
 

Pr{A1=a1|R=1} = 
∑

∈

===
===

{0,1}i
11

1111

i}Pr{A*i}A|1Pr{R
}aPr{A*}aA|1Pr{R   

 
= 

})(0.5)1A|1Pr{R}0A|1(Pr{R
}(0.5)aA|1Pr{R

11

11

==+==
==  

 
= 

}1A|1Pr{R}0A|1Pr{R
}aA|1Pr{R

11

11

==+==
== . 

 
Using the above formula for Pr{A1=a1|R=1},  
E[A1|R=1] = 0*Pr{A1=0|R=1} + 1*Pr{A1=1|R=1}  
 

= 
}1A|1Pr{R}0A|1Pr{R

1}A|1Pr{R

11

1

==+==
==  

 
= 

10

1

pp
p
+

. 
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Therefore, we have 
 
 

E[Y|R=1, A2=a2] = γ1 + γ3 + γ5a2 +
10

1

pp
p
+

(γ2 + γ4 + γ6a2). 

 
 
Derivation of Var[Y|R=1, A2=a2]: 
 
Var[Y|R=1, A2=a2] = E[Y2|R=1, A2=a2] − E[Y|R=1, A2=a2]2.  
 
Using the result for E[Y|R=1, A2=a2] above: 
E[Y|R=1, A2=a2] 2 

= (γ1 + γ3 + γ5a2)2 + 
10

1

pp
p
+

2(γ2 + γ4 + γ6a2)(γ1 + γ3 + γ5a2) 

+
2

10

1

pp
p

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

(γ2 + γ4 + γ6a2)2 

 
Next,  
E[Y2|R=1, A2=a2] = E[ E[Y2|A1, R, A2] |R=1, A2=a2], (Law of Total Expectation) 
 = E[ Var[Y|A1, R, A2] + E[Y|A1, R, A2]2 |R=1, A2=a2] 
 = E[ Var[Y|A1, R, A2] |R=1, A2=a2]  

   + E[(γ1 + γ2A1)2 + 2R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1)  
          + R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |R=1, A2=a2] 

 = E[ Var[Y|A1, R, A2] |R=1, A2=a2]  
   + E[(γ1 + γ2A1)2|R=1, A2=a2] 
   + 2E[R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1) |R=1, A2=a2] 
   + E[R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |R=1, A2=a2] 

 
Now, we solve each of the components in the second part of E[Y2|R=1, A2=a2]. 
 
E[(γ1 + γ2A1)2 |R=1, A2=a2] 
 = E[γ1

2 +2γ1γ2A1+ γ2
2A1

2 |R=1] 
 = γ1

2 + 2γ1γ2E[A1|R=1]+ γ2
2E[A1|R=1] 

 
= γ1

2 + (2γ1γ2 + γ2
2)

10

1

pp
p
+

 

 
Recalling that A1

2=A1,  
E[R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1) |R=1, A2=a2] 
= E[R(γ3(γ1 + γ2A1) + γ4A1(γ1 + γ2) + γ5A2(γ1 + γ2A1) + γ6A1A2(γ1 + γ2))|R=1, A2=a2] 

= γ3(γ1 + γ2
10

1

pp
p
+

) + γ4(γ1 + γ2)
10

1

pp
p
+

 + γ5a2(γ1 + γ2
10

1

pp
p
+

) + γ6a2
10

1

pp
p
+

(γ1 + γ2) 

 = (γ3 + γ5a2)(γ1 + γ2
10

1

pp
p
+

) + (γ4 + γ6a2)(γ1 + γ2)
10

1

pp
p
+

. 
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E[R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |R=1, A2=a2] 
= E[R((γ3 + γ4A1)2 + 2(γ3 + γ4A1)(γ5A2 + γ6A1A2) + (γ5A2 + γ6A1A2)2) |R=1, A2=a2] 
= E[R(γ3 + γ4A1)2 + 2RA2(γ3 + γ4A1)(γ5 + γ6A1) + R A2 (γ5 + γ6A1)2 |R=1, A2=a2] 

= γ3
2 + (2γ3γ4 + γ4

2)
10

1

pp
p
+

+ 2a2γ3γ5 + 2a2(γ3γ5 + γ5γ4 + γ4γ6) 
10

1

pp
p
+

  

   + a2γ5
2 + a2(2γ5γ6 + γ6

2)
10

1

pp
p
+

. 

 
Substituting back into Var[Y|R=1, A2=a2] = E[Y2|R=1, A2=a2] − E[Y|R=1, A2=a2]2 and 
simplifying, we get 
 

 

Var[Y|R=1, A2=a2] = E[ Var[Y|A1, R, A2] |R=1, A2=a2] + (γ2 + γ4+ γ6a2)2

10

10

pp
pp

+
. 

 
 
 
Means and Variances for Analyses 3 and 4 
 
Goal: Find a formula for E[Y|A1=a1, A2=a2] and Var[Y|A1=a1, A2=a2] in terms of  
E[Y|A1=a1, R=r, A2=a2] and Var[Y|A1=a1, R=r, A2=a2]. 
 
Derivation of E[Y|A1=a1, A2=a2]: 
 
E[Y|A1=a1, A2=a2] = E[ E[Y|A1, R, A2] |A1=a1, A2=a2], 
 = E[γ1 + γ2A1 + γ3R + γ4A1R + γ5RA2 + γ6A1RA2 |A1=a1, A2=a2] 
 = γ1 + γ2a1 + E[R|A1=a1] (γ3 + γ4a1 + γ5a2 + γ6a1a2) 
 
Therefore, we have 
 
 

E[Y|A1=a1, A2=a2] = γ1 + γ2a1 + pa1(γ3 + γ4a1 + γ5a2 + γ6a1a2). 
 
 
Derivation of Var[Y|A1=a1, A2=a2]: 
 
Var[Y|A1=a1, A2=a2] = E[Y2|A1=a1, A2=a2] − E[Y|A1=a1, A2=a2]2.  
 
Using the result for E[Y|A1=a1, A2=a2] above: 
E[Y|A1=a1, A2=a2]2 = (γ1 + γ2a1 + pa1(γ3 + γ4a1 + γ5a2 + γ6a1a2))2 
 = (γ1 + γ2a1)2 + 2pa1(γ1 + γ2a1) (γ3 + γ4a1 + γ5a2 + γ6a1a2) 

   + pa1
2(γ3 + γ4a1 + γ5a2 + γ6a1a2)2 
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Next,  
E[Y2|A2=a1, A2=a2] = E[ E[Y2|A1, R, A2] |A2=a1, A2=a2] 
 = E[ Var[Y|A1, R, A2] + E[Y|A1, R, A2]2 |A2=a1, A2=a2] 
 = E[ Var[Y|A1, R, A2] |A2=a1, A2=a2] 

   + E[(γ1 + γ2A1)2 + 2R(γ3 + γ4A1 + γ5A2 + γ6A1A2)(γ1 + γ2A1)  
          + R2(γ3 + γ4A1 + γ5A2 + γ6A1A2)2 |A2=a1, A2=a2] 

 = E[ Var[Y|A1, R, A2] |A2=a1, A2=a2] 
   + (γ1 + γ2a1)2 
   + 2pa1(γ3 + γ4a1 + γ5a2 + γ6a1a2)(γ1 + γ2a1) 
   + pa1(γ3 + γ4a1 + γ5a2 + γ6a1a2)2 

 
Plugging back into Var[Y|A1=a1, A2=a2] = E[Y2|A1=a1, A2=a2] − E[Y|A1=a1, A2=a2]2

 and 
simplifying gives  
 

 
Var[Y|A1=a1, A2=a2] = E[ Var[Y|A1, R, A2] |A1=a1, A2=a2] 

+ pa1(1−pa1)(γ3 + γ4a1 + γ5a2 + γ6a1a2)2
. 

 
 
 
4.3  Parameter Values for Data that Follows the Working Assumptions 
 
Now, for each of the four analyses, we present the parameters which give data sets that 
conform to the working assumptions presented in Section 3.2 
 
Analysis 1 
 
The only working assumption to satisfy for N1 is that the variance of outcome Y given 
the first treatment A1=1 is equal to the variance of outcome Y given the first treatment 
A1=0; in other words, σ2 = Var[Y|A1=1] = Var[Y|A1=0].  Since the formula does not 
depend on an intermediate non-response rate, for the sake of simplicity, we let p0 = p1, 
and denote the common rate by p.  Without loss of generality, we choose A1=1 to have 
the larger mean outcome.  We let σ2 = 100.  The actual values we chose for the 
simulations that follow the working assumptions for the sample size formula for Analysis 
1 are summarized in Tables 8a and 8b.  
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Table 8a.   Simulation parameters for Analysis 1 data 
that follows the working assumptions for sample size formula N1 

 
Scenario Effect 

size 
Non-

response rate 
p0 = p1 

E[Y|A1=a1, R=r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 
 

1 0.2 0.5 {10.25, 3.25, 15.25, 7, 5, 12} {90, 90, 61.625,  95,  95,  86} 
2 0.2 0.7 {10.75, 3.75, 15.75, 7, 5, 12} {80, 80,  67.5083, 95, 95, 84.1333} 
3 0.2 0.9 {11.25, 4.25, 16.25, 7, 5, 12} {82, 82, 86.725, 96, 96, 94.6} 
4 0.5 0.5 {13.25, 6.25, 18.25, 7, 5, 12} {80, 80, 71.625, 94, 94, 87} 
5 0.5 0.7 {13.75, 6.75, 18.75, 7, 5, 12} {80, 80, 67.5083, 90, 90, 95.8} 
6 0.5 0.9 {14.25, 7.25, 19.25, 7, 5, 12} {82,  82,  86.725, 96, 96, 94.6} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 
 

Table 8b.  Related values for simulation parameters in Table 8a 
 
Scenario Effect 

size 
Non-response rate 

p0 = p1 
Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 

μa1,a2 
 

1 0.2 0.5 {12, 3.25, -7, -5, 2, 5} {12.75, 9.25, 9.5,  8.5} 
2 0.2 0.7 {12, 3.75, -7, -5, 2, 5} {12.25, 7.35, 8.5, 7.1} 
3 0.2 0.9 {12, 4.25, -7, -5, 2, 5} {11.75, 5.45,  7.5, 5.7} 
4 0.5 0.5 {12, 6.25, -7, -5, 2, 5} {15.75, 12.25, 9.5, 8.5} 
5 0.5 0.7 {12, 6.75, -7, -5, 2, 5} {15.25, 10.35, 8.5, 7.1} 
6 0.5 0.9 {12, 7.25, -7, -5, 2, 5} {14.75,  8.45, 7.5, 5.7} 
(1) Order in which γ parameters are listed: {γ1, γ2, γ3, γ4, γ5, γ6} 
(2) Given for informational purposes, not for generative model 
(3) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
 
 
Analysis 2 
 
The working assumptions to satisfy for N2 are  

• the variance of outcome Y for non-responders given second treatment A2=1 is 
equal to the variance of outcome Y for non-responders given A2=0, denoted σ2 = 
Var[Y|R=1, A2=1] = Var[Y|R=1, A2=0], and  

• the intermediate non-response rate, p0 and  p1 are equal, denoted by p. 
Without loss of generality, we choose A2=1 to have the larger mean outcome for non-
responders.  We let σ2 = 100.  The actual values we chose for the simulating data that 
follow the working assumptions for the sample size formula for Analysis 2 are 
summarized in Tables 9a and 9b.  
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Table 9a.   Simulation parameters for Analysis 2 data 
that follows the working assumptions for sample size formula N1 

 
Scenario Effect 

size 
Non-

response 
rate 

p0 = p1 
 

E[Y|A1=a1, R=r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 
 

1 0.2 0.5 {6.25, 3.25, 15.25, 6, 5, 12} {99.9688, 98.4688, 100, 100, 100, 100} 
2 0.2 0.7 {6.25, 3.25, 15.25, 6, 5, 12} {99.9563, 97.8562, 100, 100, 100, 100} 
3 0.2 0.9 {6.25, 3.25, 15.25, 6, 5,  12} {99.9437, 97.2437, 100, 100, 100, 100} 
4 0.5 0.5 {11.25, 3.25, 15.25, 7, 5, 12} {91.9688, 99.4688, 99,  99,  99,  99} 
5 0.5 0.7 {11.25, 3.25, 15.25, 7, 5, 12} {89.3563, 99.8562, 98,  98,  98, 98} 
6 0.5 0.9 {11.25, 3.25, 15.25, 7, 5, 12} {93.7438, 98.2437, 90,  90,  99,  99} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 
 

Table 9b.  Related values for simulation parameters in Table 9a 
 
Scenario Effect 

size 
Non-response rate 

p0 = p1 
Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 

μa1,a2 
 

1 0.2 0.5 {12, 3.25, -7, -5, 2, 5} {10.75, 9.25, 9, 8.5} 
2 0.2 0.7 {12, 3.25, -7, -5, 2, 5} {8.95, 6.85, 7.8, 7.1} 
3 0.2 0.9 {12, 3.25, -7, -5, 2, 5} {7.15, 4.45, 6.6, 5.7} 
4 0.5 0.5 {12, 3.25, -7, -5, 2, 6} {13.25, 9.25, 9.5, 8.5} 
5 0.5 0.7 {12, 3.25, -7, -5, 2, 6} {12.45, 6.85, 8.5, 7.1} 
6 0.5 0.9 {12, 3.25, -7, -5, 2, 6} {11.65, 4.45, 7.5, 5.7} 
(1) Order in which γ parameters are listed: {γ1, γ2, γ3, γ4, γ5, γ6} 
(2) Given for informational purposes, not for generative model 
(3) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
 
 
Analysis 3 
 
As noted previously, to generate data for Analysis 3, we need to specify the strategies of 
interest, and we will compare strategies (A1=1, A2=1) and (A1=0, A2=0).   
 
We generated the data according to the working assumptions in common for N3a and N3b 
which are  

• the variance of outcome Y given treatment  (A1=1, A2=1) and (A1=0, A2=0), 
denoted σ2 = Var[Y|A1=1, A2=1] = Var[Y|A1=0, A2=0], and  

• the intermediate non-response rate, p0 and  p1 are equal, denoted by p. 
Additional assumptions were ignored.  Note that when we generate a data set of size N3b 
using the parameters below, we are always violating working assumption that p1 = p0 = 1. 
 
Without loss of generality, we choose the strategy (A1=1, A2=1) to have the larger mean 
outcome than (A1=0, A2=0).  We let σ2 = 100.  The actual values we chose for the 
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simulations that follow the common working assumptions for the sample size formulae 
for Analysis 3 are summarized in Tables 10a and 10b.  
 
 

Table 10a.   Simulation parameters for Analysis 3 data 
that follows the common working assumptions for sample size formulae N3a and N3b 

 
Scenario Effect 

size 
Non-

response 
rate 

p0 = p1 
 

E[Y|A1=a1 ,R=r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 
 

1 0.2 0.5 {6.5, 1.5, 14.5, 7, 5, 12} {99, 46.5, 69, 95, 83, 92.5} 
2 0.2 0.7 {6.7, 1.7, 14.7, 7, 5, 12} {95, 63.5, 66.8667,  95, 87.8, 

94.1667} 
3 0.2 0.9 {6.9, 1.9, 14.9, 7, 5, 12} {95, 84.5, 87.4, 98, 95.6, 95.5} 
4 0.5 0.5 {9.5, 4.5, 17.5, 7, 5, 12} {98, 45.5, 70, 97, 85, 90.5} 
5 0.5 0.7 {9.7, 4.7, 17.7, 7, 5, 12} {94, 62.5, 69.2, 97, 89.8, 89.5} 
6 0.5 0.9 {9.9, 4.9, 17.9, 7, 5, 12} {94, 83.5, 96.4, 98, 95.6, 95.5} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 

 
Table 10b.  Related values for simulation parameters in Table 10a 

 
Scenario Effect 

size 
Non-response rate 

p0 = p1 
Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 

μa1,a2 
 

1 0.2 0.5 {12, 2.5, -7, -6, 2, 3} {10.5, 8, 9.5, 8.5} 
2 0.2 0.7 {12 2.7 -7 -6 2 3} {9.1, 5.6, 8.5, 7.1} 
3 0.2 0.9 {12 2.9 -7 -6 2 3} {7.7, 3.2, 7.5, 5.7} 
4 0.5 0.5 {12 5.5 -7 -6 2 3} {13.5, 11, 9.5, 8.5} 
5 0.5 0.7 {12 5.7 -7 -6 2 3} {12.1, 8.6, 8.5, 7.1} 
6 0.5 0.9 {12 5.9 -7 -6 2 3} {10.7, 6.2, 7.5, 5.7} 
(1) Order in which γ parameters are listed: {γ1, γ2, γ3, γ4, γ5, γ6} 
(2) Given for informational purposes, not for generative model 
(3) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
 
 
Analysis 4 
 
For the simulations to evaluate the robustness of the sample size calculation for Analysis 
4, we choose (A1=1, A2=1) to always have the highest mean outcome and generate the 
data according to two different “patterns”: 1) the strategy means are all different and 2) 
the mean outcomes of the other three strategies besides (A1=1, A2=1) are all equal.  In the 
second pattern, it is more difficult to detect the “best” strategy because the highest mean 
must be distinguished from all the rest, which are all the “next highest”, instead of just 
one next highest mean.  In both patterns, we set the variance for all strategies (a1, a2) to 
Var[Y|A1=a1, A2=a2] = 100. 
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Table 11a.   Simulation parameters for Analysis 4 data 
that follows the working assumptions for sample size formula N1 

 
Scenario Effect 

size 
Non-

response 
rate 

p0 = p1 

E[Y|A1=a1 =r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 
 

Pattern 1: the mean for (1,1) is the highest mean, the other three are allowed to vary 
1 0.2 0.5 {7.5, 2.5, 15.5, 7, 5, 12} {97,  44.5, 71, 95, 83, 92.5} 
2 0.2 0.7 {8.1, 3.1, 16.1, 7, 5, 12} {97, 65.5, 62.2, 95, 87.8, 94.1667} 
3 0.2 0.9 {8.7, 3.7, 16.7, 7, 5, 12} {97, 86.5, 69.4, 98, 95.6, 95.5} 
4 0.5 0.5 {13.5, 2.5, 15.5, 7, 5, 12} {100, 17.5, 98, 97, 85, 90.5} 
5 0.5 0.7 {12.75, 2.5, 15.5, 7, 5, 12} {100, 51.5687, 94.7062, 97, 89.8, 89.5} 
6 0.5 0.9 {12.25, 2.5, 15.5, 7, 5, 12} {100, 84.1563, 90.4938, 97, 94.6, 104.5} 
Pattern 2: the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 0.5 {9, 5, 12, 5, 5, 12} {97, 77, 98.5, 95, 95, 80.5} 
8 0.2 0.7 {7.85, 5, 12, 5, 5, 12} {97, 87.4668, 94.9443, 95, 95, 77.3667} 
9 0.2 0.9 {7.2, 5, 12, 5, 5, 12} {98, 95.404, 97.264, 97, 97, 82.9} 
10 0.5 0.5 {15, 5, 12, 5, 5, 12} {100, 80, 95.5, 97, 97, 78.5} 
11 0.5 0.7 {12.15, 5, 12, 5, 5, 12} {100, 85.3067, 99.9843, 97, 97, 72.7} 
12 0.5 0.9 {10.6, 5, 12, 5, 5, 12} {100, 95.296, 98.236, 97, 97, 82.9} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 

 
Table 11b.  Related values for simulation parameters in Table 11a 

 
Scenario Effect 

size 
Non-response rate 

p0 = p1 
Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 

μa1,a2 
 

Pattern 1: the mean for (1,1) is the highest mean, the other three are allowed to vary 
1 0.2 0.5 {12, 3.5, -7, -6, 2, 3} {11.5,  9,  9.5, 8.5} 
2 0.2 0.7 {12, 4.1, -7, -6, 2, 3} {10.5, 7, 8.5, 7.1} 
3 0.2 0.9 {12, 4.7, -7, -6, 2, 3} {9.5, 5, 7.5, 5.7} 
4 0.5 0.5 {12, 3.5, -7, -6, 2, 9} {14.5, 9, 9.5, 8.5} 
5 0.5 0.7 {12, 3.5, -7, -6, 2, 8.25} {13.575, 6.4, 8.5, 7.1} 
6 0.5 0.9 {12, 3.5, -7, -6, 2, 7.75} {12.575, 3.8, 7.5, 5.7} 
Pattern 2: the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 0.5 {12, 0, -7, 0, 0, 4} {10.5, 8.5, 8.5, 8.5} 
8 0.2 0.7 {12, 0, -7, 0, 0, 2.85} {9.095, 7.1, 7.1, 7.1} 
9 0.2 0.9 {12, 0, -7, 0, 0, 2.2} {7.68, 5.7, 5.7, 5.7} 
10 0.5 0.5 {12, 0, -7, 0, 0, 10} {13.5, 8.5, 8.5, 8.5} 
11 0.5 0.7 {12, 0, -7, 0, 0, 7.15} {12.105, 7.1, 7.1, 7.1} 
12 0.5 0.9 {12, 0, -7, 0, 0, 5.6} {10.74, 5.7, 5.7, 5.7} 
(1) Order in which γ parameters are listed: {γ1, γ2, γ3, γ4, γ5, γ6} 
(2) Given for informational purposes, not for generative model 
(3) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
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4.4  Parameter Values for Data that Challenges the Working Assumptions of Equal Non-
Response Rate  
 
Since the sample size formulae for Analyses 1 and 2 are standard formulae, and we only 
present simulation designs for testing the robustness of the newly developed sample size 
formulae for Analyses 3 and 4.  When we challenge the non-response rate equality 
assumption, we calculate the sample size formula for a particular non-response rate p, 
then generate the data with non-response rates Pr{R=1|A1=1} = p–0.05 and 
Pr{R=1|A1=0} = p+0.05.   
 
Analysis3 
 
Note that when we generate a data set of size N3b using the parameters below, we are 
violating both N3b working assumptions that p1 = p0 = p and p = 1. 
 

Table 12a.  Simulation parameters for Analysis 3 data 
that violate the working assumption of equal non-response rate 

for sample size formula N3a and N3b 
 
Scenario Effect 

size 
Non-

response rate 
{p0,  p1} 

 

E[Y|A1=a1 =r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 

1 0.2 {0.55, 0.45} {5.75, 0.75, 13.75, 7, 5, 12} {99, 51.75, 77.2545, 90, 79.2, 
98.4722} 

2 0.2 {0.75, 0.65} {5.95, 0.95, 13.95, 7, 5, 12} {97, 70.75, 75.8571, 95, 89, 96.25} 
3 0.2 {0.95, 0.85} {6.15, 1.15, 14.15, 7, 5, 12} {97, 91.75, 98.8667, 99, 97.8, 

95.25} 
4 0.5 {0.55, 0.45} {8.75, 3.75, 16.75, 7, 5, 12} {98, 50.75, 78.0727, 95, 84.2, 

92.3611} 
5 0.5 {0.75, 0.65} {8.25, 3.25, 16.25, 7, 5, 12} {98, 82.25, 85.8857, 97, 93.4, 

95.75} 
6 0.5 {0.95, 0.85} {9.15, 4.15, 17.15, 7, 5, 12} {97, 91.75, 98.8667, 99, 97.8, 

95.25} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 
 

Table 12b.  Related values for simulation parameters in Table 12a 
 
Scenario Effect 

size 
Non-response rate 

{p0,  p1} 
 

Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 
μa1,a2 

 
1 0.2 {0.55, 0.45} {12, 1.75, -7, -6, 2, 3} {10.15, 7.9, 9.25, 8.15} 
2 0.2 {0.75, 0.65} {12, 1.95, -7, -6, 2, 3} {8.75, 5.5, 8.25, 6.75} 
3 0.2 {0.95, 0.85} {12, 2.15, -7, -6, 2 3} {7.35, 3.1, 7.25, 5.35} 
4 0.5 {0.55, 0.45} {12, 4.75, -7, -6, 2, 3} {13.15, 10.9, 9.25, 8.15} 
5 0.5 {0.75, 0.65} {12, 4.25, -7, -6, 2, 3} {11.05, 7.8, 7.75, 6.05} 
6 0.5 {0.95, 0.85} {12, 5.15, -7, -6, 2, 3} {10.35, 6.1, 7.25, 5.35} 
(1) Given for informational purposes, not for generative model 
(2) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0}  
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Analysis4 
 

Table 13a.  Simulation parameters for Analysis 4 data 
that violate working assumption of equal non-response rate 

for sample size formula N4  
 
Scenario Effect 

size 
Non-

response rate 
{p0,  p1} 

 

E[Y|A1=a1 =r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 
 

Pattern 1: the mean for (1,1) is the highest mean, the other three are allowed to vary 
1 0.2 {0.55, 0.45} {7.4, 1.4, 14.4, 7, 5, 12} {100, 34, 77.95, 98, 87.2, 88.6944} 
2 0.2 {0.75, 0.65} {7.8, 1.8, 14.8, 7, 5, 12} {100, 58, 68.15, 98, 92, 87.25} 
3 0.2 {0.95, 0.85} {8.2, 2.2, 15.2, 7, 5, 12} {100, 82, 58.35, 98, 96.8, 114.25} 
4 0.5 {0.55, 0.45} {16, 5, 14, 2, 5, 13} {100, 57.65, 98.2, 70, 95.65, 70.1167} 
5 0.5 {0.75, 0.65} {11, 3, 14, 2, 5, 13} {100, 60.8, 94.15, 70, 84.25, 99.25} 
6 0.5 {0.95, 0.85} {14, 8, 14, 6, 9, 13} {100, 94.6, 100, 98, 99.65, 91.45} 
Pattern 2: the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 {0.55, 0.45} {7.895, 3.445, 12, 5, 5, 

12} 
{100, 69.0147, 92.4170, 98, 98, 
75.4944} 

8 0.2 {0.75, 0.65} {6.995, 3.92, 12, 5, 5, 12} {100, 85.9173, 83.7175, 98, 98, 69.25} 
9 0.2 {0.95, 0.85} {6.53, 4.175, 12, 5, 5, 12} {100, 95.3035, 74.5672, 98, 98, 91.45} 
10 0.5 {0.55, 0.45} {14.3, 3.2, 13, 5, 5, 13} {110, 58.1075, 91.0577, 98, 98, 

67.2444} 
11 0.5 {0.75, 0.65} {11.5, 3.8, 13, 5, 5, 13} {110, 81.1635, 79.9661, 98, 98, 58} 
12 0.5 {0.95, 0.85} {9.925, 4.05, 13, 5, 5, 13} {100, 89.4030, 91.9627, 98, 98, 77.2} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
 
 

Table 13b.  Related values for simulation parameters in Table13a  
 
Scenario Effect 

size 
Non-response rate 

{p0,  p1} 
 

Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 
μa1,a2 

 
Pattern 1: the mean for (1,1) is the highest mean, the other three are allowed to vary 
1 0.2 {0.55, 0.45} {12, 2.4, -7, -6, 2, 4} {11.25, 8.55, 9.25, 8.15} 
2 0.2 {0.75, 0.65} {12, 2.8, -7, -6, 2, 4} {10.25, 6.35, 8.25, 6.75} 
3 0.2 {0.95, 0.85} {12, 3.2, -7, -6, 2, 4} {9.25, 4.15, 7.25, 5.35} 
4 0.5 {0.55, 0.45} {13, 1, -8, -1, -3, 14} {14.9, 9.95, 6.95, 8.6} 
5 0.5 {0.75, 0.65} {13, 1, -8, -3, -3, 11}  {12.05, 6.85, 4.75, 7} 
6 0.5 {0.95, 0.85} {13, 1, -4, -2, -3, 9}  {14, 8.9, 6.35, 9.2} 
Pattern 2: the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 {0.55, 0.45} {12, 0, -7, -1.555, 0, 4.45}  {10.1528, 8.1502, 8.15, 8.15} 
8 0.2 {0.75, 0.65} {12, 0, -7, -1.08, 0, 3.075}  {8.7468, 6.7480, 6.75, 6.75} 
9 0.2 {0.95, 0.85} {12, 0, -7, -.825, 0, 2.355} {7.3505, 5.3487, 5.35, 5.35} 
10 0.5 {0.55, 0.45} {13, 0, -8, -1.8, 0, 11.1}  {13.585, 8.59, 8.6, 8.6} 
11 0.5 {0.75, 0.65} {13, 0, -8, -1.2, 0, 7.7}  {12.025, 7.02, 7, 7} 
12 0.5 {0.95, 0.85} {13, 0, -8, -.95, 0, 5.875}  {10.3863, 5.3925, 5.4, 5.4} 
(1) Given for informational purposes, not for generative model 
(2) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
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4.4  Parameter Values for Data that Challenges the Working Assumptions of Equal 
Variance 
 
Again, we only present simulation designs for evaluating the newly developed sample 
size formulae for Analyses 3 and 4.  In challenging the equal variance assumption, we set 
one of the variances at 81% of the other variance.   
 
Analysis3 
 
For these simulations, we set Var[Y|A1=1, A2=1] = 100 and Var[Y|A1=0, A2=0] = 81.  
Additionally, we assume Var[Y|A1=1, A2=1] = Var[Y|A1=1, A2=0] and Var[Y|A1=0, 
A2=0] = Var[Y|A1=0, A2=1]. 
 
 

Table 14a.  Simulation parameters for Analysis 3 data 
that violate working assumption of equal variance for sample size formula N3a and N3b 

 
Scenario Effect 

size 
Non-

response 
rate 

p0 = p1 
 

E[Y|A1=a1 =r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2)(3) 
ς2

a1,r,a2 
chosen so that  

Var[Y|A1=1, A2=1] = 100,  
Var[Y|A1=0, A2=0] = 81 

1 0.2 0.5 {6.403, 1.403, 14.403, 7, 5, 12} {97, 44.5, 71, 75, 63, 74.5} 
2 0.2 0.7 {6.603, 1.603, 14.603, 7, 5, 12} {95, 63.5, 66.8667, 75, 67.8, 77.5} 
3 0.2 0.9 {6.803, 1.803, 14.803, 7, 5, 12} {95, 84.5, 87.4, 80, 77.6, 67.5} 
4 0.5 0.5 {9.257, 4.257, 17.257, 7, 5, 12} {98, 45.5, 70, 70, 58, 79.5} 
5 0.5 0.7 {9.457, 4.457, 17.457, 7, 5, 12} {98, 66.5, 59.8667, 70, 62.8, 89.1667} 
6 0.5 0.9 {9.657, 4.657, 17.657, 7, 5, 12} {98, 87.5, 60.4, 80, 77.6, 67.5} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
(3) Additionally, we assume Var[Y|A1=1, A2=1] = Var[Y|A1=1, A2=0] and Var[Y|A1=0, A2=0] = 
Var[Y|A1=0, A2=1]. 
 
 

Table 14b.  Related values for simulation parameters in Table 14a 
 
Scenario Effect 

size 
Non-

response rate 
p0 = p1 

 

Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 
μa1,a2 

 

1 0.2 0.5 {12,  2.403, -7, -6, 2, 3}   {10.403, 7.903, 9.5, 8.5} 
2 0.2 0.7 {12,  2.603, -7, -6, 2, 3}   {9.003, 5.503, 8.5, 7.1} 
3 0.2 0.9 {12,  2.803, -7, -6, 2, 3}   {7.6030, 3.103, 7.5, 5.7} 
4 0.5 0.5 {12,  5.257, -7, -6, 2, 3}   {13.257, 10.757, 9.5, 8.5} 
5 0.5 0.7 {12,  5.457, -7, -6, 2, 3}   {11.857, 8.357, 8.5, 7.1} 
6 0.5 0.9 {12, 5.657, -7, -6, 2, 3}   {10.457, 5.957, 7.5, 5.7} 
(1) Given for informational purposes, not for generative model 
(2) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0} 
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Analysis4 
 
For these simulations, we set Var[Y|A1=1, A2=1] = 100 and for next best strategy (0, 1), 
Var[Y|A1=0, A2=1] = 81.  Additionally, for Pattern 1, we assume Var[Y|A1=1, A2=1] = 
Var[Y|A1=1, A2=0] and Var[Y|A1=0, A2=1] = Var[Y|A1=0, A2=0].  For Pattern 2, since 
the means for all the strategies besides (1, 1) are equal, we assume Var[Y|A1=1, A2=0] = 
Var[Y|A1=0, A2=1] = Var[Y|A1=0, A2=0] = 81. 
 
 

Table 15a.  Simulation parameters for Analysis 4 data 
that violate working assumption of equal variance for sample size formula N4  

 
Scenario Effect 

size 
Non-

response 
rate 

p0 = p1 
 

E[Y|A1=a1 =r,A2=a2](1) 
νa1,r,a2 

 

Var[Y|A1=a1 R=r, A2=a2] (2) 
ς2

a1,r,a2 

Pattern 1(3): the mean for (1,1) is the highest mean, (0,1) has the next highest mean, the other two are allowed 
to vary below the mean of (0,1) 
1 0.2 0.5 {7.5, 2.5, 15.5, 7, 5, 12} {98, 45.5, 70, 80, 68, 69.5} 
2 0.2 0.7 {8.1, 3.1, 16.1, 7, 5, 12} {90, 58.5, 78.5333, 80, 72.8, 65.8333} 
3 0.2 0.9 {8.7, 3.7, 16.7, 7, 5, 12} {95, 84.5, 87.4, 79, 76.6, 76.5} 
4 0.5 0.5 {13.5, 2.5, 15.5, 7, 5, 12} {120, 37.5, 78, 76, 64, 73.5} 
5 0.5 0.7 {12.75, 2.5, 15.5, 7, 5, 12} {100, 51.5687, 94.7062, 76, 68.8, 75.1667} 
6 0.5 0.9 {12.25, 2.5, 15.5, 7, 5, 12} {100, 84.1563, 90.4938, 76, 73.6, 103.5} 
Pattern 2(4): the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 0.5 {9, 5, 12, 5, 5, 12} {120, 62, 75.5, 76, 76, 61.5} 
8 0.2 0.7 {7.85, 5, 12, 5, 5, 12} {100, 63.3239, 87.9442, 75, 75, 60.7} 
9 0.2 0.9 {7.2, 5, 12, 5, 5, 12} {100, 76.2929, 79.2640, 75, 75, 90.9} 
10 0.5 0.5 {15, 5, 12, 5, 5, 12} {100, 42, 95.5, 75, 75, 62.5} 
11 0.5 0.7 {12.15, 5, 12, 5, 5, 12} {100, 58.1639, 99.9843, 75, 75, 60.7} 
12 0.5 0.9 {10.6, 5, 12, 5, 5, 12} {100, 74.1849, 98.2360, 75, 75, 90.9} 
(1) Order in which parameters νa1,r,a2 are listed: {ν1,1,1, ν1,1,0, ν1,0,0, ν0,1,1, ν0,1,0, ν0,0,0} 
(2) Order in which parameters ς2

a1,r,a2 are listed: {ς2
1,1,1, ς2

1,1,0, ς2
1,0,0, ς2

0,1,1, ς2
0,1,0, ς2

0,0,0} 
(3) Parameters ς2

a1,r,a2 are chosen so that Var[Y|A1=1, A2=1] = Var[Y|A1=1, A2=0] = 100, Var[Y|A1=0, 
A2=1] = Var[Y|A1=0, A2=0] = 81  
(4) Parameters ς2

a1,r,a2 are chosen so that Var[Y|A1=1, A2=1] = 100, and Var[Y|A1=1, A2=0] = Var[Y|A1=0, 
A2=1] = Var[Y|A1=0, A2=0] = 81 
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Table 15b. Related values for simulation parameters in Table 15a 
 
Scenario Effect 

size 
Non-response 

rate 
p0 = p1 

 

Corresponding γ values E[Y|A1=a1, A2=a2](1), (2) 
μa1,a2 

 

Pattern 1: the mean for (1,1) is the highest mean, (0,1) has the next highest mean, the other two are 
allowed to vary below the mean of (0,1) 
1 0.2 0.5 {12, 3.5, -7, -6, 2, 3}   {11.5, 9, 9.5, 8.5} 
2 0.2 0.7 {12, 4.1, -7, -6, 2, 3}  {10.5, 7, 8.5, 7.1} 
3 0.2 0.9 {12, 4.7, -7, -6, 2, 3}   {9.5, 5, 7.5, 5.7} 
4 0.5 0.5 {12, 3.5, -7, -6, 2, 9}   {14.5, 9, 9.5, 8.5} 
5 0.5 0.7 {12, 3.5, -7, -6, 2, 8.25}   {13.575, 6.4, 8.5, 7.1} 
6 0.5 0.9 {12, 3.5, -7, -6, 2, 7.75}   {12.575, 3.8, 7.5, 5.7} 
Pattern 2: the mean for (1,1) is the highest mean and the other three means are all equal 
7 0.2 0.5 {12, 0, -7, 0, 0, 4}   {10.5, 8.5, 8.5, 8.5} 
8 0.2 0.7 {12, 0, -7, 0, 0, 2.85}   {9.0950, 7.1, 7.1, 7.1} 
9 0.2 0.9 {12, 0, -7, 0, 0, 2.2}   {7.6800, 5.7, 5.7, 5.7} 
10 0.5 0.5 {12, 0, -7, 0, 0, 10}  {13.5, 8.5, 8.5, 8.5} 
11 0.5 0.7 {12, 0, -7, 0, 0, 7.15}  {12.105, 7.1, 7.1, 7.1} 
12 0.5 0.9 {12, 0, -7, 0, 0, 5.6}   {10.74, 5.7, 5.7, 5.7} 
(1) Given for informational purposes, not for generative model 
(2) Order in which parameters μa1,a2 are listed: {μ1,1, μ1,0, μ1,0, μ0,0}  
 
 
4.5  Parameter Values for Data that Challenges the Working Assumptions of Normally 
Distributed Final Outcome. 
 
Recall that in Section 4.1, we outlined the method for generating the data.  To challenge 
the normality assumption, instead of generating the final outcome given a particular 
history (A1, R, A2) by a normal distribution with mean E[Y|A1, R, A2] and variance 
Var[Y|A1, R, A2], we generate from a Gamma distribution with the same mean and 
variance.  That is, instead of generating 
 

Y|A1, R, A2 ~  N(E[Y|A1, R, A2], Var[Y|A1, R, A2]) 
 
we generate Y|A1, R, A2 ~ Gamma(a, b) where 

a = 
]A  R,,A|Y[Var

]A  R,,A|Y[E

21

2
21  and b = 

]A  R,,A|Y[E
]A  R,,A|Y[Var

21

21 . 

The mean of this gamma distribution is a*b and the variance is a*b2.  The skewness of 
this distribution is calculated by 2*sqrt(1/a), in other words: 

skewness = 2
21

21

]A  R,,A|Y[E
]A  R,,A|Y[Var*2 . 

 
Use the values for E[Y|A1, R, A2] and Var[Y|A1, R, A2] specified in Tables 10a and 11a, 
but generate the final outcome from a Gamma distribution as outlined here.  
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5.  RESULTS OF SIMULATIONS FOR EVALUATING THE SAMPLE SIZE 
FORMULAE 
 
We present the simulation results in their entirety, which we could not do in Scott et al1  
due to space constraints.  Tables 16a and 16b provide the results of the simulations 
designed to evaluate the sample size formulas for analyses 3 and 4 respectively.  We also 
examined the ability to perform Analysis 4 when we size for one of the other Analyses, in 
settings which follow the working assumptions and those which challenge them.  Tables 
Table 17a-c show the results for detecting the best strategy, i.e. Analysis 4, when it is not 
used in sizing the trial.   

 
 

Table 16a.  Investigation of Sample Size Assumption Violations for 
Analysis 3 comparing strategies (1,1) and (0,0); 

The power to reject the null hypothesis for Analysis 3 is shown when sample size is 
calculated to reject the null hypothesis for Analysis 3 with power of 0.90 and type I error 

of 0.05 (two-tailed) 
 

Simulation Parameters Simulation Results 
(power) 

Effect 
size 

Non-
response 

rate 
(Default) 

Sample 
size 

formula 

Total 
sample 

size 

Default 
working 

assumptions 
are correct 

Non-equal 
non-

response 
rates (1) 

 

Non-equal 
variance(2) 

Non-normal  
outcome Y(3)

0.2 0.5 N3a 1584 0.893 0.902 0.900 0.882 
0.2 0.7 N3a 1796 0.922* 0.884 0.892 0.896 
0.2 0.9 N3a 2007 0.882 0.910 0.916 0.877* 
0.5 0.5 N3a 254 0.896  0.864* 0.920  0.851* 
0.5 0.7 N3a 287  0.851*  0.836*  0.872* 0.891 
0.5 0.9 N3a 321 0.926* 0.886 0.880 0.898 
0.2 0.5 N3b 2112 0.950* 0.958* 0.954* 0.974* 
0.2 0.7 N3b 2112 0.960* 0.943* 0.927* 0.945* 
0.2 0.9 N3b 2112 0.903 0.934* 0.931* 0.898 
0.5 0.5 N3b 338 0.973* 0.938*   0.971* 0.916 
0.5 0.7 N3b 338 0.904 0.888 0.939* 0.917 
0.5 0.9 N3b 338 0.937* 0.890 0.889 0.922* 

(1) Pr{R=1| A1=1, A2=1} = p–0.05 and Pr{R=1| A1=0, A2=0} = p+0.05, where p is the “default” non-response rate. 
(2) Var[Y| A1=0, A2=0] = .81*Var[Y| A1=1, A2=1] 
(3) The final outcome comes from a gamma distribution. 
* The 95% confidence interval for this proportion does not contain 0.90 
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Table 16b.  Investigation of Sample Size Violations for Analysis 4;  
Probability(1) to detect the correct “best” strategy  

when the sample size is calculated to detect the correct maximum strategy mean 90% of 
the time. 

  
Simulation Parameters Simulation Results 

(probability) 
Effect 

size 
Non-

response 
rate 

(Default) 

Pattern(2) Sample 
size(3) 

Default 
working 

assumptions 
are correct 

Non-equal 
non-

response 
rates (4) 

 

Non-equal 
variance (5) 

Non-
normal 

outcome Y 
(6) 

0.2 0.5 1 608 0.966* 0.984* 0.965* 0.972* 
0.2 0.7 1 608 0.972* 0.975* 0.975* 0.979* 
0.2 0.9 1 608 0.962* 0.969* 0.964* 0.962* 
0.5 0.5 1 97 0.980* 0.985* 0.966* 0.956* 
0.5 0.7 1 97 0.961* 0.974* 0.969* 0.972* 
0.5 0.9 1 97 0.960* 0.919* 0.976* 0.947* 
0.2 0.5 2 608 0.964* 0.953* 0.952* 0.944* 
0.2 0.7 2 608 0.926* 0.920* 0.957* 0.937* 
0.2 0.9 2 608 0.905 0.929* 0.922* 0.923* 
0.5 0.5 2 97 0.922* 0.974* 0.976* 0.948* 
0.5 0.7 2 97 0.933* 0.901 0.951* 0.913 
0.5 0.9 2 97 0.893 0.917 0.927* 0.885 

(1) Probability calculated as the percentage of 1000 simulations on which correct strategy mean was selected as the 
maximum. 
(2) 1 refers to the pattern of strategy means such that all are different, but that for (1,1) is always the highest. 2 refers to 
the pattern of strategy means such that the mean for (1,1) is higher than the other three and the other three are all equal.  
(3) Calculated to detect the correct maximum strategy mean 90% of the time when the sample size assumptions hold. 
(4) Pr{R=1|A1=1, A2=1} = p–0.05 and Pr{R=1|A1=a1, A2=a2} = p+0.05, where p is the “default” non-response rate and 
(a1, a2) is the strategy with the next highest mean. 
(5) Var[Y|A1=1, A2=1] = .81*Var[Y|A1=a1, A2=a2], where (a1, a2) is the strategy with the next highest mean. 
(6) The final outcome comes from a gamma distribution 
* The 95% confidence interval for this proportion does not contain 0.90. 
 
 

Table 17a.  The probability(1) of choosing the correct strategy for Analysis 4 
when sample size is calculated to reject the null hypothesis for Analysis 1 

(for a two-tailed test with power of 0.90 and type I error of 0.05) 
Simulation Parameters Simulation Results 

Effect size 
for Analysis 

1 

Non-response 
Rate 

Sample size Analysis 1 
(power) 

Analysis 4 
(probability(1))  

Effect size for 
Analysis 4 

0.2 0.5 1056 0.880 1.000 0.325 
0.2 0.7 1056 0.896 1.000 0.375 
0.2 0.9 1056 0.904 1.000 0.425 
0.5 0.5 169 0.934 0.987 0.350 
0.5 0.7 169 0.910 0.998 0.490 
0.5 0.9 169 0.920 0.998 0.630 

(1) Probability calculated as the percentage of 1000 simulations on which correct strategy mean was selected as the 
maximum. 
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Table 17b.  The probability(1) of choosing the correct strategy for Analysis 4 
when sample size is calculated to reject the null hypothesis for Analysis 2 

(for a two-tailed test with power of 0.90 and type I error of 0.05) 
Simulation Parameters Simulation Results 

Effect size 
for Analysis 

2 

Non-response 
Rate 

Sample size Analysis 2 
(power) 

Analysis 4 
(probability(1))  

Effect size for 
Analysis 4 

0.2 0.5 2112 0.906 0.999 0.133 
0.2 0.7 1509 0.897 0.956 0.109 
0.2 0.9 1174 0.895 0.716 0.054 
0.5 0.5 338 0.895 0.997 0.372 
0.5 0.7 241 0.913 0.993 0.397 
0.5 0.9 188 0.901 0.978 0.420 

(1) Probability calculated as the percentage of 1000 simulations on which correct strategy mean was selected as the 
maximum. 

 
 

Table 17c.  The probability(1) of choosing the correct strategy for Analysis 4 
when sample size is calculated to reject the null hypothesis for Analysis 3 

(for a two-tailed test with power of 0.90 and type I error of 0.05) 
Simulation Parameters Simulation Results 

Effect 
size for 

Analysis 3 

Non-
response 

rate 

Sample size 
formula 

Sample size Analysis 3 
(power) 

Analysis 4 
(probability(1)) 

Effect size 
for 

Analysis 4 
0.2 0.5 N3a 1584 0.893 0.939 0.10 
0.2 0.7 N3a 1796 0.922 0.839 0.06 
0.2 0.9 N3a 2007 0.882 0.614 0.02 
0.5 0.5 N3a 254 0.896 0.976 0.25 
0.5 0.7 N3a 287 0.851 0.990 0.35 
0.5 0.9 N3a 321 0.926 0.978 0.32 
0.2 0.5 N3b 2112 0.950 0.953 0.10 
0.2 0.7 N3b 2112 0.960 0.878 0.06 
0.2 0.9 N3b 2112 0.903 0.613 0.02 
0.5 0.5 N3b 338 0.973 0.989 0.25 
0.5 0.7 N3b 338 0.904 0.990 0.35 
0.5 0.9 N3b 338 0.937 0.985 0.32 

(1) Probability calculated as the percentage of 1000 simulations on which correct strategy mean was selected as the 
maximum. 
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APPENDIX 
 

Matlab Code to Calculate Sample Size for Analysis 4 
 
function N = samplesize4(maxn, sigma2, delta, conf) 
%  
% DESCRIPTION: 
% This formula calculates the sample size for sizing a 
% SMART trial to select the strategy with the highest 
% mean outcome with some specified probability. 
% We assume a SMART design with two decision points: 
%   1) two initial treatments (A1 in {0,1}) 
%   2) two treatments (A2 in {0,1}) for 
%      non-responders (R = 1) and maintenance treatment 
%      for responders (R = 0). 
% We make the following assumptions: 
% - The marginal variances of the final outcome given the 
%   strategy are all equal and we denote this variance by 
%   sigma2.  This means that, 
%   sigma2 = Var[Y|A1=a1, A2=a2] for all (a1, a2) in 
%       {(1,1), (1,0), (0,1), (0,0)} 
% - The final outcome Y is normally distributed. 
% - The sample sizes will be large enough so that the 
%   estimator for the mean is approximately normally  
%   distributed. 
% - The correlation between 
%   * the final outcome Y given treatment strategy (1,1) 
%     and Y given treatment strategy (1,0) is the same as 
%   * the correlation between Y given treatment strategy 
%     (0,1) and Y given treatment strategy (0,0); 
%   we denote this identical correlation by r.  
%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   
% INPUT 
% maxn: the maximum sample size the user has available,  
%       might be constrained by cost 
% sigma2: variance of the final outcome given a strategy 
% delta: standardized effect size the user desires to be 
%        able to detect 
% conf: the probability that the strategy estimated to have 
%       the largest mean does indeed have the largest mean 
%  
% OUTPUT 
% N: sample size 
%  
% EXAMPLE 



 30

% samplesize4(3000, 100, .2, .90); 
%  
%  
%  
  
if nargin < 4 
   conf=.9; 
end 
  
x0=[1,maxn]'; 
options = optimset('Display','off','TolFun', 1, 
'TolX',.01); 
  
% find u (i.e. sample size) such that p0 = conf 
[x,fval,exitflag] = fzero(@(u) prob(u, sigma2,delta,conf), 
x0, options) 
  
N=ceil(x) %N is the sample size 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [p0] = prob(n, sigma2, delta, conf) 
 
% function used in ‘samplesize4’ 
  
niter=20000; 
% we assume the variance is constant across the treatment  
% strategies; 
% s is the variance of the *estimator* of the strategy  
% means: 
s=sigma2.*4;  
% only making one treatment strategy have an effect, this  
% would be the hardest to detect: 
one1=[delta.*sqrt(sigma2).*ones(niter,1),zeros(niter,3)];  
  
for i=1:100 
 

 % full range of possibilities for the correlation: 
    r=(i-1)./100;  
    % Correlation comes from people the treatment share, 
    % directly related to the response rate. 
    % Structure of Sigma comes from sharing responders and  
    % treatments: 
    Sigma=[s,r*s,0,0;r*s,s,0,0;0,0,s,r*s;0,0,r*s,s]./n; 
        try % to make sure the covariance matrix is valid: 
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           R=chol(Sigma);  
        catch 
           i  
           break; 
        end; 
    % here is the normality assumption: 
    R=mvnrnd(one1,Sigma);  
   
    % how often out of 20000 is the first larger than the  
    % remaining three, this indicates probability (somewhat 
    % analagous to power for hypothesis test) of finding  
    % the best strategy: 
    test=(R(:,1)> max(R(:,2:4),[],2)); 
    order(i)=mean(test);  
     
end; 
  
% take the one with the worst power, use that to find the  
% sample size: 
[p0,j]=min(order');  
p0=p0-conf; 
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