FROM:
J Hepatol 1997 (Apr); 26 (4): 871–895
Velussi M, Cernigoi AM, De Monte A, Dapas F, Caffau C, Zilli M
Anti-Diabetes Centre,
Monfalcone Hospital,
Gorizia, Italy
BACKGROUND/AIMS: Several studies have demonstrated that diabetic patients with cirrhosis require insulin treatment because of insulin resistance. As chronic alcoholic liver damage is partly due to the lipoperoxidation of hepatic cell membranes, anti-oxidizing agents may be useful in treating or preventing damage due to free radicals. The aim of this study was to ascertain whether long-term treatment with silymarin is effective in reducing lipoperoxidation and insulin resistance in diabetic patients with cirrhosis.
METHODS: A 12-month open, controlled study was conducted in two well-matched groups of insulin-treated diabetics with alcoholic cirrhosis. One group (n=30) received 600 mg silymarin per day plus standard therapy, while the control group (n=30) received standard therapy alone. The efficacy parameters, measured regularly during the study, included fasting blood glucose levels, mean daily blood glucose levels, daily glucosuria levels, glycosylated hemoglobin (HbA1c) and malondialdehyde levels.
RESULTS: There was a significant decrease (p<0.01) in fasting blood glucose levels, mean daily blood glucose levels, daily glucosuria and HbA1c levels already after 4 months of treatment in the silymarin group. In addition, there was a significant decrease (p<0.01) in fasting insulin levels and mean exogenous insulin requirements in the treated group, while the untreated group showed a significant increase (p<0.05) in fasting insulin levels and a stabilized insulin need. These findings are consistent with the significant decrease (p<0.01) in basal and glucagon-stimulated C-peptide levels in the treated group and the significant increase in both parameters in the control group. Another interesting finding was the significant decrease (p<0.01) in malondialdehyde/levels observed in the treated group.
CONCLUSIONS: These results show that treatment with silymarin may reduce the lipoperoxidation of cell membranes and insulin resistance, significantly decreasing endogenous insulin overproduction and the need for exogenous insulin administration.